1
|
Mao H, Xu M, Wang H, Liu Y, Wang F, Gao Q, Zhao S, Ma L, Hu X, Zhang X, Xi G, Fang X, Shi Y. Transcriptional patterns of brain structural abnormalities in CSVD-related cognitive impairment. Front Aging Neurosci 2024; 16:1503806. [PMID: 39679256 PMCID: PMC11638219 DOI: 10.3389/fnagi.2024.1503806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Background Brain structural abnormalities have been associated with cognitive impairment in individuals with small cerebral vascular disease (CSVD). However, the molecular and cellular factors making the different brain structural regions more vulnerable to CSVD-related cognitive impairment remain largely unknown. Materials and methods Voxel-based morphology (VBM) was performed on the structural magnetic resonance imaging data of 46 CSVD-related cognitive impairment and 73 healthy controls to analyze and compare the gray matter volume (GMV) between the 2 groups. Transcriptome-neuroimaging spatial correlation analysis was carried out in combination with the Allen Human Brain Atlas to explore gene expression profiles associated with changes in cortical morphology in CSVD-related cognitive impairment. Results VBM analysis demonstrated extensive decreased GMV in CSVD-related cognitive impairment in the bilateral temporal lobe and thalamus, especially the hippocampus, thalamus, parahippocampus, and fusiform, and the left temporal lobe showed a more severe atrophy than the right temporal lobe. These brain structural alterations were closely related to memory and executive function deficits in CSVD-related cognitive impairment. Furthermore, a total of 1,580 genes were revealed to be significantly associated with regional change in GMV. The negatively and positively GMV-linked gene expression profiles were mainly enriched in RNA polymerase II, catalytic activity acting on a nucleic acid, aminoacyltransferase activity, axonogenesis, Golgi membrane, and cell junction organization. Conclusion Our findings suggest that brain morphological abnormalities in CSVD-related cognitive impairment are linked to molecular changes involving complex polygenic mechanisms, highlighting the interplay between genetic influences and structural alterations relevant to CSVD-related cognitive impairment.
Collapse
Affiliation(s)
- Haixia Mao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Min Xu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Lin Ma
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoyun Hu
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Guangjun Xi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Dupré N, Drieu A, Joutel A. Pathophysiology of cerebral small vessel disease: a journey through recent discoveries. J Clin Invest 2024; 134:e172841. [PMID: 38747292 PMCID: PMC11093606 DOI: 10.1172/jci172841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Cerebral small vessel disease (cSVD) encompasses a heterogeneous group of age-related small vessel pathologies that affect multiple regions. Disease manifestations range from lesions incidentally detected on neuroimaging (white matter hyperintensities, small deep infarcts, microbleeds, or enlarged perivascular spaces) to severe disability and cognitive impairment. cSVD accounts for approximately 25% of ischemic strokes and the vast majority of spontaneous intracerebral hemorrhage and is also the most important vascular contributor to dementia. Despite its high prevalence and potentially long therapeutic window, there are still no mechanism-based treatments. Here, we provide an overview of the recent advances in this field. We summarize recent data highlighting the remarkable continuum between monogenic and multifactorial cSVDs involving NOTCH3, HTRA1, and COL4A1/A2 genes. Taking a vessel-centric view, we discuss possible cause-and-effect relationships between risk factors, structural and functional vessel changes, and disease manifestations, underscoring some major knowledge gaps. Although endothelial dysfunction is rightly considered a central feature of cSVD, the contributions of smooth muscle cells, pericytes, and other perivascular cells warrant continued investigation.
Collapse
Affiliation(s)
- Nicolas Dupré
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Antoine Drieu
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Anne Joutel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| |
Collapse
|
3
|
Uemura M, Tanaka N, Ando S, Yanagihara T, Onodera O. Missense Variants in COL4A1/2 Are Associated with Cerebral Aneurysms: A Case Report and Literature Review. Neurol Int 2024; 16:226-238. [PMID: 38392956 PMCID: PMC10892350 DOI: 10.3390/neurolint16010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Although cerebral aneurysm (CA) is a defining complication of COL4A1/2-related vasculopathy, the specific factors influencing its onset remain uncertain. This study aimed to identify and analyze these factors. METHODS We described a family presenting with a novel variant of the COL4A1 gene complicated with CA. Concurrently, an exhaustive review of previously documented patients with COL4A1/2-related vasculopathy was conducted by sourcing data from PubMed, Web of Science, Google Scholar, and Ichushi databases. We compared the variant types and locations between patients with CA (positive group) and those without CA (negative group). RESULTS This study included 53 COL4A1/2 variants from 76 patients. Except for one start codon variant, all the identified variants in CA were missense variants. Otherwise, CA was not associated with other clinical manifestations, such as small-vessel disease or other large-vessel abnormalities. A higher frequency of missense variants (95.5% vs. 58.1%, p = 0.0035) was identified in the CA-positive group. CONCLUSIONS CA development appears to necessitate qualitative alterations in COL4A1/2, and the underlying mechanism seems independent of small-vessel disease or other large-vessel anomalies. Our findings suggest that a meticulous evaluation of CA is necessary when missense variants in COL4A1/2 are identified.
Collapse
Affiliation(s)
- Masahiro Uemura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan (O.O.)
| | - Natsuki Tanaka
- Department of Neurology, Tane General Hospital, Osaka 550-0025, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan (O.O.)
| | | | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan (O.O.)
| |
Collapse
|
4
|
Alkhamis FA, Alabdali MM, Alsulaiman AA, Alamri AS, Alali R, Akhtar MS, Alsalman SA, Cyrus C, Albakr AI, Alduhalan AS, Gandla D, Al-Romaih K, Abouelhoda M, Loza BL, Keating B, Al-Ali AK. Whole-exome sequencing analyses in a Saudi Ischemic Stroke Cohort reveal association signals, and shows polygenic risk scores are related to Modified Rankin Scale Risk. Funct Integr Genomics 2023; 23:102. [PMID: 36973604 PMCID: PMC10042957 DOI: 10.1007/s10142-023-01039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Ischemic stroke represents a significant societal burden across the globe. Rare high penetrant monogenic variants and less pathogenic common single nucleotide polymorphisms (SNPs) have been described as being associated with risk of diseases. Genetic studies in Saudi Arabian patients offer a greater opportunity to detect rare high penetrant mutations enriched in these consanguineous populations. We performed whole exome sequencing on 387 ischemic stroke subjects from Saudi Arabian hospital networks with up to 20,230 controls from the Saudi Human Genome Project and performed gene burden analyses of variants in 177 a priori loci derived from knowledge-driven curation of monogenic and genome-wide association studies of stroke. Using gene-burden analyses, we observed significant associations in numerous loci under autosomal dominant and/or recessive modelling. Stroke subjects with modified Rankin Scale (mRSs) above 3 were found to carry greater cumulative polygenic risk score (PRS) from rare variants in stroke genes (standardized PRS mean > 0) compared to the population average (standardized PRS mean = 0). However, patients with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes (OR (95%CI) = 1.79 (1.29-2.49), p = 0.0005), with the means of standardized PRS at or lower than 0. In conclusion, gene burden testing in Saudi stroke populations reveals a number of statistically significant signals under different disease inheritance models. However, interestingly, stroke subjects with mRS of 3 or lower had lower cumulative genetic risk from rare variants in stroke genes and therefore, determining the potential mRS cutoffs to use for clinical significance may allow risk stratification of this population.
Collapse
Affiliation(s)
- Fahad A Alkhamis
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Majed M Alabdali
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdulla A Alsulaiman
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Abdullah S Alamri
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Rudaynah Alali
- Department of Internal Medicine, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammed S Akhtar
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sadiq A Alsalman
- Department of Neurology, King Fahd Hospital, Alhafof, Saudi Arabia
| | - Cyril Cyrus
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Aishah I Albakr
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Anas S Alduhalan
- Department of Neurology, King Fahd Hospital of The University, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Divya Gandla
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | | | | | - Bao-Li Loza
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Brendan Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Amein K Al-Ali
- Department of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| |
Collapse
|