1
|
Zhu E, Wang J, Shi W, Chen Z, Zhu M, Xu Z, Li L, Shan D. Utilizing machine learning to tailor radiotherapy and chemoradiotherapy for low-grade glioma patients. PLoS One 2024; 19:e0306711. [PMID: 39163387 PMCID: PMC11335161 DOI: 10.1371/journal.pone.0306711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/23/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could help tailor treatments to each patient's needs. OBJECTIVE We sought to discern the individual suitability of radiotherapy (RT) or chemoradiotherapy (CRT) in LGG patients using ML models. METHODS Ten ML models, trained to infer ITE in 4,042 LGG patients, were assessed. We compared patients who followed treatment recommendations provided by the models with those who did not. To mitigate the risk of treatment selection bias, we employed inverse probability treatment weighting (IPTW). RESULTS The Balanced Survival Lasso-Network (BSL) model showed the most significant protective effect among all the models we tested (hazard ratio (HR): 0.52, 95% CI, 0.41-0.64; IPTW-adjusted HR: 0.58, 95% CI, 0.45-0.74; the difference in restricted mean survival time (DRMST): 9.11, 95% CI, 6.19-12.03; IPTW-adjusted DRMST: 9.17, 95% CI, 6.30-11.83). CRT presented a protective effect in the 'recommend for CRT' group (IPTW-adjusted HR: 0.60, 95% CI, 0.39-0.93) yet presented an adverse effect in the 'recommend for RT' group (IPTW-adjusted HR: 1.64, 95% CI, 1.19-2.25). Moreover, the models predict that younger patients and patients with overlapping lesions or tumors crossing the midline are better suited for CRT (HR: 0.62, 95% CI, 0.42-0.91; IPTW-adjusted HR: 0.59, 95% CI, 0.36-0.97). CONCLUSION Our findings underscore the potential of the BSL model in guiding the choice of adjuvant treatment for LGGs patients, potentially improving survival time. This study emphasizes the importance of ML in customizing patient care, understanding the nuances of treatment selection, and advancing personalized medicine.
Collapse
Affiliation(s)
- Enzhao Zhu
- School of Medicine, Tongji University, Shanghai, China
| | - Jiayi Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Weizhong Shi
- Shanghai Hospital Development Center, Shanghai, China
| | - Zhihao Chen
- School of Business, East China University of Science and Technology, Shanghai, China
| | - Min Zhu
- Department of Computer Science and Technology, School of Electronics and Information Engineering, Tongji University, Shanghai, China
| | - Ziqin Xu
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States of America
| | - Linlin Li
- School of Medicine, Tongji University, Shanghai, China
| | - Dan Shan
- Department of Biobehavioral Sciences, Columbia University, New York, NY, United States of America
- School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
2
|
Chapman TP, Farrell SM, Plaha P, Green AL, Moosavi SH. Blunted perception of breathlessness in three cases of low grade insular-glioma. Front Neurosci 2024; 18:1339839. [PMID: 38410161 PMCID: PMC10894922 DOI: 10.3389/fnins.2024.1339839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024] Open
Abstract
Better understanding of breathlessness perception addresses an unmet clinical need for more effective treatments for intractable dyspnoea, a prevalent symptom of multiple medical conditions. The insular-cortex is predominantly activated in brain-imaging studies of dyspnoea, but its precise role remains unclear. We measured experimentally-induced hypercapnic air-hunger in three insular-glioma patients before and after surgical resection. Tests involved one-minute increments in inspired CO2, raising end-tidal PCO2 to 7.5 mmHg above baseline (38.5 ± 5.7 mmHg), whilst ventilation was constrained (10.7 ± 2.3 L/min). Patients rated air-hunger on a visual analogue scale (VAS). Patients had lower stimulus-response (2.8 ± 2 vs. 11 ± 4 %VAS/mmHg; p = 0.004), but similar threshold (40.5 ± 3.9 vs. 43.2 ± 5.1 mmHg), compared to healthy individuals. Volunteered comments implicated diminished affective valence. After surgical resection; sensitivity increased in one patient, decreased in another, and other was unable to tolerate the ventilatory limit before any increase in inspired CO2.We suggest that functional insular-cortex is essential to register breathlessness unpleasantness and could be targeted with neuromodulation in chronically-breathless patients. Neurological patients with insula involvement should be monitored for blunted breathlessness to inform clinical management.
Collapse
Affiliation(s)
- Tom P. Chapman
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarah M. Farrell
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Puneet Plaha
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L. Green
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Shakeeb H. Moosavi
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Alshiekh Nasany R, de la Fuente MI. Therapies for IDH-Mutant Gliomas. Curr Neurol Neurosci Rep 2023; 23:225-233. [PMID: 37060388 PMCID: PMC10182950 DOI: 10.1007/s11910-023-01265-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Isocitrate dehydrogenase (IDH) mutant gliomas are a distinct type of primary brain tumors with unique characteristics, behavior, and disease outcomes. This article provides a review of standard of care treatment options and innovative, therapeutic approaches that are currently under investigation for these tumors. RECENT FINDINGS Extensive pre-clinical data and a variety of clinical studies support targeting IDH mutations in glioma using different mechanisms, which include direct inhibition and immunotherapies that target metabolic and epigenomic vulnerabilities caused by these mutations. IDH mutations have been recognized as an oncogenic driver in gliomas for more than a decade and as a positive prognostic factor influencing the research for new therapeutic methods including IDH inhibitors, DNA repair inhibitors, and immunotherapy.
Collapse
Affiliation(s)
| | - Macarena Ines de la Fuente
- Sylvester Comprehensive Cancer Center and Department of Neurology, 1120 NW 14th Street, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Gai QJ, Fu Z, He J, Mao M, Yao XX, Qin Y, Lan X, Zhang L, Miao JY, Wang YX, Zhu J, Yang FC, Lu HM, Yan ZX, Chen FL, Shi Y, Ping YF, Cui YH, Zhang X, Liu X, Yao XH, Lv SQ, Bian XW, Wang Y. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduct Target Ther 2022; 7:33. [PMID: 35105853 PMCID: PMC8807725 DOI: 10.1038/s41392-021-00855-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 11/10/2022] Open
Abstract
Platelet-derived growth subunit A (PDGFA) plays critical roles in development of glioblastoma (GBM) with substantial evidence from TCGA database analyses and in vivo mouse models. So far, only platelet-derived growth receptor α (PDGFRA) has been identified as receptor for PDGFA. However, PDGFA and PDGFRA are categorized into different molecular subtypes of GBM in TCGA_GBM database. Our data herein further showed that activity or expression deficiency of PDGFRA did not effectively block PDGFA activity. Therefore, PDGFRA might be not necessary for PDGFA function.To profile proteins involved in PDGFA function, we performed co-immunoprecipitation (Co-IP) and Mass Spectrum (MS) and delineated the network of PDGFA-associated proteins for the first time. Unexpectedly, the data showed that EPHA2 could be temporally activated by PDGFA even without activation of PDGFRA and AKT. Furthermore, MS, Co-IP, in vitro binding thermodynamics, and proximity ligation assay consistently proved the interaction of EPHA2 and PDGFA. In addition, we observed that high expression of EPHA2 leaded to upregulation of PDGF signaling targets in TCGA_GBM database and clinical GBM samples. Co-upregulation of PDGFRA and EPHA2 leaded to worse patient prognosis and poorer therapeutic effects than other contexts, which might arise from expression elevation of genes related with malignant molecular subtypes and invasive growth. Due to PDGFA-induced EPHA2 activation, blocking PDGFRA by inhibitor could not effectively suppress proliferation of GBM cells, but simultaneous inhibition of both EPHA2 and PDGFRA showed synergetic inhibitory effects on GBM cells in vitro and in vivo. Taken together, our study provided new insights on PDGFA function and revealed EPHA2 as a potential receptor of PDGFA. EPHA2 might contribute to PDGFA signaling transduction in combination with PDGFRA and mediate the resistance of GBM cells to PDGFRA inhibitor. Therefore, combination of inhibitors targeting PDGFRA and EHA2 represented a promising therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Qu-Jing Gai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Xue Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Qin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Ya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei-Cheng Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hui-Min Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Biobank of Institute of Pathology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fang-Lin Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Cancer, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
5
|
Kong BY, Sim HW, Nowak AK, Yip S, Barnes EH, Day BW, Buckland ME, Verhaak R, Johns T, Robinson C, Thomas MA, Giardina T, Lwin Z, Scott AM, Parkinson J, Jeffree R, Lourenco RDA, Hovey EJ, Cher LM, Kichendasse G, Khasraw M, Hall M, Tu E, Amanuel B, Koh ES, Gan HK. LUMOS - Low and Intermediate Grade Glioma Umbrella Study of Molecular Guided TherapieS at relapse: Protocol for a pilot study. BMJ Open 2021; 11:e054075. [PMID: 37185327 PMCID: PMC8719186 DOI: 10.1136/bmjopen-2021-054075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Introduction Grades 2 and 3 gliomas (G2/3 gliomas), when combined, are the second largest group of malignant brain tumours in adults. The outcomes for G2/3 gliomas at progression approach the dismal outcomes for glioblastoma (GBM), yet there is a paucity of trials for Australian patients with relapsed G2/3 gliomas compared with patients with GBM. LUMOS will be a pilot umbrella study for patients with relapsed G2/3 gliomas that aims to match patients to targeted therapies based on molecular screening with contemporaneous tumour tissue. Participants in whom no actionable or no druggable mutation is found, or in whom the matching drug is not available, will form a comparator arm and receive standard of care chemotherapy. The objective of the LUMOS trial is to assess the feasibility of this approach in a multicentre study across five sites in Australia, with a view to establishing a national molecular screening platform for patient treatment guided by the mutational analysis of contemporaneous tissue biopsies Methods and analysis This study will be a multicentre pilot study enrolling patients with recurrent grade 2/3 gliomas that have previously been treated with radiotherapy and chemotherapy at diagnosis or at first relapse. Contemporaneous tumour tissue at the time of first relapse, defined as tissue obtained within 6 months of relapse and without subsequent intervening therapy, will be obtained from patients. Molecular screening will be performed by targeted next-generation sequencing at the reference laboratory (PathWest, Perth, Australia). RNA and DNA will be extracted from representative formalin-fixed paraffin embedded tissue scrolls or microdissected from sections on glass slides tissue sections following a review of the histology by pathologists. Extracted nucleic acid will be quantified by Qubit Fluorometric Quantitation (Thermo Fisher Scientific). Library preparation and targeted capture will be performed using the TruSight Tumor 170 (TST170) kit and samples sequenced on NextSeq 550 (Illumina) using NextSeq V.2.5 hi output reagents, according to the manufacturer’s instructions. Data analysis will be performed using the Illumina BaseSpace TST170 app v1.02 and a custom tertiary pipeline, implemented within the Clinical Genomics Workspace software platform from PierianDx (also refer to section 3.2). Primary outcomes for the study will be the number of patients enrolled and the number of patients who complete molecular screening. Secondary outcomes will include the proportion of screened patients enrolled; proportion of patients who complete molecular screening; the turn-around time of molecular screening; and the value of a brain tumour specific multi-disciplinary tumour board, called the molecular tumour advisory panel as measured by the proportion of patients in whom the treatment recommendation was refined compared with the recommendations from the automated bioinformatics platform of the reference laboratory testing. Ethics and dissemination The study was approved by the lead Human Research Ethics Committee of the Sydney Local Health District: Protocol No. X19-0383. The study will be conducted in accordance with the principles of the Declaration of Helsinki 2013, guidelines for Good Clinical Practice and the National Health and Medical Research Council National Statement on Ethical Conduct in Human Research (2007, updated 2018 and as amended periodically). Results will be disseminated using a range of media channels including newsletters, social media, scientific conferences and peer-reviewed publications. Trial registration number ACTRN12620000087954; Pre-results.
Collapse
Affiliation(s)
- Benjamin Y Kong
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Hao-Wen Sim
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
- Department of Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Kinghorn Cancer Centre, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Anna K Nowak
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Sonia Yip
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | | | - Bryan W Day
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Cell and Molecular Biology Department, QIMR Berghofer, Herston, Queensland, Australia
| | - Michael E Buckland
- Department of Neuropathology, Brain and Mind Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Terrance Johns
- Oncogenic Signalling Laboratory, Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Cleo Robinson
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Marc A Thomas
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Tindaro Giardina
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Zarnie Lwin
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Jonathon Parkinson
- Department of Neurosurgery, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rosalind Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- University of Queensland School of Medicine, Herston, Queensland, Australia
| | - Richard de Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology, Ultimo, New South Wales, Australia
| | - Elizabeth J Hovey
- Department of Medical Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
| | - Lawrence M Cher
- Department of Neurology, Austin Health, Heidelberg, Victoria, Australia
| | - Ganessan Kichendasse
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
- Department of Medical Oncology, Flinders Centre for Innovation in Cancer, Bedford Park, South Australia, Australia
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Merryn Hall
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Emily Tu
- NHMRC Clinical Trials Centre, Camperdown, New South Wales, Australia
| | - Benhur Amanuel
- Department of Anatomical Pathology, PathWest Laboratory Medicine, Nedlands, Western Australia, Australia
| | - Eng-Siew Koh
- Faculty of Medicine, University of New South Wales, Randwick, New South Wales, Australia
- Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool, New South Wales, Australia
- Collaboration for Cancer Outcomes, Research and Evaluation, Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
6
|
He M, Han K, Zhang Y, Chen W. Hierarchical-order multimodal interaction fusion network for grading gliomas. Phys Med Biol 2021; 66. [PMID: 34663762 DOI: 10.1088/1361-6560/ac30a1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022]
Abstract
Significance. Gliomas are the most common type of primary brain tumors and have different grades. Accurate grading of a glioma is therefore significant for its clinical treatment planning and prognostic assessment with multiple-modality magnetic resonance imaging (MRI).Objective and Approach. In this study, we developed a noninvasive deep-learning method based on multimodal MRI for grading gliomas by focusing on effective multimodal fusion via leveraging collaborative and diverse high-order statistical information. Specifically, a novel high-order multimodal interaction module was designed to promote interactive learning of multimodal knowledge for more efficient fusion. For more powerful feature expression and feature correlation learning, the high-order attention mechanism is embedded in the interaction module for modeling complex and high-order statistical information to enhance the classification capability of the network. Moreover, we applied increasing orders at different levels to hierarchically recalibrate each modality stream through diverse-order attention statistics, thus encouraging all-sided attention knowledge with lesser parameters.Main results. To evaluate the effectiveness of the proposed scheme, extensive experiments were conducted on The Cancer Imaging Archive (TCIA) and Multimodal Brain Tumor Image Segmentation Benchmark 2017 (BraTS2017) datasets with five-fold cross validation to demonstrate that the proposed method can achieve high prediction performance, with area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity values of 95.2%, 94.28%, 95.24%, and 92.00% on the BraTS2017 and 93.50%, 92.86%, 97.14%, and 90.48% on TCIA datasets, respectively.
Collapse
Affiliation(s)
- Man He
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, Guangdong 510515, People's Republic of China
| | - Kangfu Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, Guangdong 510515, People's Republic of China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, Guangdong 510515, People's Republic of China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou, Guangdong 510515, People's Republic of China
| |
Collapse
|
7
|
Prabhudesai S, Wang NC, Ahluwalia V, Huan X, Bapuraj JR, Banovic N, Rao A. Stratification by Tumor Grade Groups in a Holistic Evaluation of Machine Learning for Brain Tumor Segmentation. Front Neurosci 2021; 15:740353. [PMID: 34690680 PMCID: PMC8526730 DOI: 10.3389/fnins.2021.740353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate and consistent segmentation plays an important role in the diagnosis, treatment planning, and monitoring of both High Grade Glioma (HGG), including Glioblastoma Multiforme (GBM), and Low Grade Glioma (LGG). Accuracy of segmentation can be affected by the imaging presentation of glioma, which greatly varies between the two tumor grade groups. In recent years, researchers have used Machine Learning (ML) to segment tumor rapidly and consistently, as compared to manual segmentation. However, existing ML validation relies heavily on computing summary statistics and rarely tests the generalizability of an algorithm on clinically heterogeneous data. In this work, our goal is to investigate how to holistically evaluate the performance of ML algorithms on a brain tumor segmentation task. We address the need for rigorous evaluation of ML algorithms and present four axes of model evaluation-diagnostic performance, model confidence, robustness, and data quality. We perform a comprehensive evaluation of a glioma segmentation ML algorithm by stratifying data by specific tumor grade groups (GBM and LGG) and evaluate these algorithms on each of the four axes. The main takeaways of our work are-(1) ML algorithms need to be evaluated on out-of-distribution data to assess generalizability, reflective of tumor heterogeneity. (2) Segmentation metrics alone are limited to evaluate the errors made by ML algorithms and their describe their consequences. (3) Adoption of tools in other domains such as robustness (adversarial attacks) and model uncertainty (prediction intervals) lead to a more comprehensive performance evaluation. Such a holistic evaluation framework could shed light on an algorithm's clinical utility and help it evolve into a more clinically valuable tool.
Collapse
Affiliation(s)
- Snehal Prabhudesai
- Computer Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas Chandler Wang
- Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
| | - Vinayak Ahluwalia
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Xun Huan
- Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | | | - Nikola Banovic
- Computer Science and Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Arvind Rao
- Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, United States
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Khan AA, Ibad H, Ahmed KS, Hoodbhoy Z, Shamim SM. Deep learning applications in neuro-oncology. Surg Neurol Int 2021; 12:435. [PMID: 34513198 PMCID: PMC8422419 DOI: 10.25259/sni_433_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 11/04/2022] Open
Abstract
Deep learning (DL) is a relatively newer subdomain of machine learning (ML) with incredible potential for certain applications in the medical field. Given recent advances in its use in neuro-oncology, its role in diagnosing, prognosticating, and managing the care of cancer patients has been the subject of many research studies. The gamut of studies has shown that the landscape of algorithmic methods is constantly improving with each iteration from its inception. With the increase in the availability of high-quality data, more training sets will allow for higher fidelity models. However, logistical and ethical concerns over a prospective trial comparing prognostic abilities of DL and physicians severely limit the ability of this technology to be widely adopted. One of the medical tenets is judgment, a facet of medical decision making in DL that is often missing because of its inherent nature as a "black box." A natural distrust for newer technology, combined with a lack of autonomy that is normally expected in our current medical practices, is just one of several important limitations in implementation. In our review, we will first define and outline the different types of artificial intelligence (AI) as well as the role of AI in the current advances of clinical medicine. We briefly highlight several of the salient studies using different methods of DL in the realm of neuroradiology and summarize the key findings and challenges faced when using this nascent technology, particularly ethical challenges that could be faced by users of DL.
Collapse
Affiliation(s)
- Adnan A Khan
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | - Hamza Ibad
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | | | - Zahra Hoodbhoy
- Department of Pediatrics, Aga Khan University, Karachi, Sindh, Pakistan
| | - Shahzad M Shamim
- Department of Neurosurgery, Aga Khan University, Karachi, Sindh, Pakistan
| |
Collapse
|
9
|
Bunda S, Zuccato JA, Voisin MR, Wang JZ, Nassiri F, Patil V, Mansouri S, Zadeh G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int J Mol Sci 2021; 22:4548. [PMID: 33925295 PMCID: PMC8123653 DOI: 10.3390/ijms22094548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy, as a non-invasive technique for cancer diagnosis, has emerged as a major step forward in conquering tumors. Current practice in diagnosis of central nervous system (CNS) tumors involves invasive acquisition of tumor biopsy upon detection of tumor on neuroimaging. Liquid biopsy enables non-invasive, rapid, precise and, in particular, real-time cancer detection, prognosis and treatment monitoring, especially for CNS tumors. This approach can also uncover the heterogeneity of these tumors and will likely replace tissue biopsy in the future. Key components of liquid biopsy mainly include circulating tumor cells (CTC), circulating tumor nucleic acids (ctDNA, miRNA) and exosomes and samples can be obtained from the cerebrospinal fluid, plasma and serum of patients with CNS malignancies. This review covers current progress in application of liquid biopsies for diagnosis and monitoring of CNS malignancies.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Jeffrey A. Zuccato
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Mathew R. Voisin
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Justin Z. Wang
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Vikas Patil
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Sheila Mansouri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
10
|
Buvarp D, Rydén I, Sunnerhagen KS, Olsson Bontell T, Gómez Vecchio T, Smits A, Jakola AS. Preoperative Patient-Reported Outcomes in Suspected Low-Grade Glioma: Markers of Disease Severity and Correlations with Molecular Subtypes. J Clin Med 2021; 10:jcm10040645. [PMID: 33567561 PMCID: PMC7914619 DOI: 10.3390/jcm10040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
This prospective study aims to determine the overall health-related quality of life (HRQoL), functioning, fatigue, and psychological distress preoperatively in patients with suspected diffuse low-grade glioma (dLGG). We were particularly interested if these parameters differed by molecular tumor subtypes: oligodendroglioma, IDHmut astrocytoma and IDHwt astrocytoma. Fifty-one patients answered self-assessed questionnaires prior to operation (median age 51 years; range 19–75; 19 females [37%]). Thirty-five (69%) patients had IDH-mutated tumors, of which 17 were 1p/19q codeleted (i.e., oligodendroglioma) and 18 non-1p/19q codeleted (i.e., IDHmut astrocytoma). A lower overall generic HRQoL was associated with a high level of fatigue (rs = −0.49, p < 0.001), visual disorder (rs = −0.5, p < 0.001), motor dysfunction (rs = −0.51, p < 0.001), depression (rs = −0.54, p < 0.001), and reduced functioning. Nearly half of the patients reported high fatigue (23 out of 51 patients) and anxiety (26/51 patients). Patients with IDHwt had worse generic HRQoL, worse functioning, and more severe fatigue, though differences were not statistically significant between the molecular subtypes. In conclusion, fatigue and anxiety are prominent self-assessed symptoms of patients with suspected dLGG in a preoperative setting, but do not seem to be a reliable method to make assumptions of underlying biology or guide treatment decisions.
Collapse
Affiliation(s)
- Dongni Buvarp
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
- Correspondence: ; Tel.: +46-707-596-580; Fax: +46-31-823-650
| | - Isabelle Rydén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Katharina S. Sunnerhagen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
- Department of Rehabilitation Medicine, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden;
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, 40530 Gothenburg, Sweden
| | - Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Neuroscience, Neurology, Uppsala University, 75185 Uppsala, Sweden
| | - Asgeir Store Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, 40530 Gothenburg, Sweden; (I.R.); (K.S.S.); (T.G.V.); (A.S.); (A.S.J.)
- Department of Neurosurgery, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
11
|
Ning Z, Luo J, Xiao Q, Cai L, Chen Y, Yu X, Wang J, Zhang Y. Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:298. [PMID: 33708925 PMCID: PMC7944310 DOI: 10.21037/atm-20-4076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background To investigate the feasibility of integrating global radiomics and local deep features based on multi-modal magnetic resonance imaging (MRI) for developing a noninvasive glioma grading model. Methods In this study, 567 patients [211 patients with glioblastomas (GBMs) and 356 patients with low-grade gliomas (LGGs)] between May 2006 and September 2018, were enrolled and divided into training (n=186), validation (n=47), and testing cohorts (n=334), respectively. All patients underwent postcontrast enhanced T1-weighted and T2 fluid-attenuated inversion recovery MRI scanning. Radiomics and deep features (trained by 8,510 3D patches) were extracted to quantify the global and local information of gliomas, respectively. A kernel fusion-based support vector machine (SVM) classifier was used to integrate these multi-modal features for grading gliomas. The performance of the grading model was assessed using the area under receiver operating curve (AUC), sensitivity, specificity, Delong test, and t-test. Results The AUC, sensitivity, and specificity of the model based on combination of radiomics and deep features were 0.94 [95% confidence interval (CI): 0.85, 0.99], 86% (95% CI: 64%, 97%), and 92% (95% CI: 75%, 99%), respectively, for the validation cohort; and 0.88 (95% CI: 0.84, 0.91), 88% (95% CI: 80%, 93%), and 81% (95% CI: 76%, 86%), respectively, for the independent testing cohort from a local hospital. The developed model outperformed the models based only on either radiomics or deep features (Delong test, both of P<0.001), and was also comparable to the clinical radiologists. Conclusions This study demonstrated the feasibility of integrating multi-modal MRI radiomics and deep features to develop a promising noninvasive grading model for gliomas.
Collapse
Affiliation(s)
- Zhenyuan Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Jiaxiu Luo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Qing Xiao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Jian Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Surgical Paradigms in Diffuse Low-grade Glioma: Insular Glioma Case Illustration. Can J Neurol Sci 2021. [DOI: 10.1017/cjn.2021.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Perreault S, Chami R, Deyell RJ, El Demellawy D, Ellezam B, Jabado N, Morgenstern DA, Narendran A, Sorensen PHB, Wasserman JD, Yip S. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Pediatric Patients. Curr Oncol 2021; 28:346-366. [PMID: 33435412 PMCID: PMC7903261 DOI: 10.3390/curroncol28010038] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Neurotrophic tyrosine receptor kinase gene fusions (NTRK) are oncogenic drivers present at a low frequency in most tumour types (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., infantile fibrosarcoma [IFS]) and considered mutually exclusive with other common oncogenic drivers. Health Canada recently approved two tyrosine receptor kinase (TRK) inhibitors, larotrectinib (for adults and children) and entrectinib (for adults), for the treatment of solid tumours harbouring NTRK gene fusions. In Phase I/II trials, these TRK inhibitors have demonstrated promising overall response rates and tolerability in patients with TRK fusion cancer who have exhausted other treatment options. In these studies, children appear to have similar responses and tolerability to adults. In this report, we provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor for pediatric patients with solid tumours. We focus on three pediatric tumour types: non-rhabdomyosarcoma soft tissue sarcoma/unspecified spindle cell tumours including IFS, differentiated thyroid carcinoma, and glioma. We also propose a tumour-agnostic consensus based on the probability of the tumour harbouring an NTRK gene fusion. For children with locally advanced or metastatic TRK fusion cancer who have either failed upfront therapy or lack satisfactory treatment options, TRK inhibitor therapy should be considered.
Collapse
Affiliation(s)
- Sébastien Perreault
- Department of Neurosciences, Division of Child Neurology CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Rose Chami
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rebecca J. Deyell
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia Children’s Hospital and Research Institute, Vancouver, BC V6H 3N1, Canada;
| | - Dina El Demellawy
- Pathology Department, Children’s Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada;
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Nada Jabado
- Department of Pediatric Hematology-Oncology, MUHC, Montreal, QC H4A 3J1, Canada;
| | - Daniel A. Morgenstern
- Division of Pediatric Hematology/Oncology, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Aru Narendran
- Departments of Pediatrics, Oncology and, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Poul H. B. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Jonathan D. Wasserman
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
14
|
Ghaffari-Rafi A, Ghaffari-Rafi S, Leon-Rojas J. Role of Temozolomide Regimen on Survival Outcomes in Molecularly Stratified WHO Grade II Gliomas: A Systematic Review. Asian J Neurosurg 2021; 16:14-23. [PMID: 34211862 PMCID: PMC8202389 DOI: 10.4103/ajns.ajns_186_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 09/27/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE/INTRODUCTION Although a critical chemotherapeutic, temozolomide's optimal regimen for 2016 World Health Organization (WHO) Grade II gliomas remains elusive, hence there is utility in not only cataloging survival outcomes of Grade II glioma subtypes against the background of temozolomide regimens, but also quantifying differences in progression-free survival (PFS) and overall survival (OS). MATERIALS AND METHODS A systematic review of MEDLINE, Embase, and Cochrane Central Register of Controlled Trails was conducted by using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis and the Cochrane Handbook of Systemic Reviews of Interventions. RESULTS Each molecular subtype of WHO Grade II glioma had a different temozolomide regimen identified as optimal in prolonging PFS and OS. For PFS, with temozolomide, the 25th, 50th, and 75th percentiles, were as follows (in months), respectively-A-wt II: 6.90, 12.95, and 19.95; A-mt II: 34.45, 36.01, and 39.60; OD II: 37.90, 46.00, and 55.03 (P = 0.016). For OS, the first quartile (25%), median (50%), third quartile (75%), were respectively identified (in months-A-wt II: 21.6 (median; n = 1); A-mt II: 60.6, 85.2, and 109.8; OD II: 86.1, 96.2, and 106.3 (P = 0.37). CONCLUSION For each tumor molecular subtype, a different temozolomide regimen was identified as optimal for prolonging PFS and OS. Furthermore, regardless of temozolomide regimen, A-wt II had a significantly shorter PFS than A-mt II and OD-II. Overall, the data can provide useful prognostic insight to patients when making critical treatment decisions. Moreover, by cataloging and assessing survival outcomes per temozolomide regimen, such may facilitate future clinical trial design.
Collapse
Affiliation(s)
- Arash Ghaffari-Rafi
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Shadeh Ghaffari-Rafi
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jose Leon-Rojas
- Universidad Internacional del Ecuador, Escuela de Medicina, Quito, Ecuador
| |
Collapse
|
15
|
Mansouri A, Brar K, Cusimano MD. Considerations for a surgical RCT for diffuse low-grade glioma: a survey. Neurooncol Pract 2020; 7:338-343. [PMID: 32537182 DOI: 10.1093/nop/npz058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Diffuse low-grade gliomas (DLGGs) are heterogeneous tumors that inevitably differentiate into malignant entities, leading to disability and death. Recently, a shift toward up-front maximal safe resection of DLGGs has been favored. However, this transition is not supported by randomized controlled trial (RCT) data. Here, we sought to survey the neuro-oncology community on considerations for a surgical RCT for DLGGs. Methods A 21-question survey focusing on a surgical RCT for DLGGs was developed and validated by 2 neurosurgeons. A sample case of a patient for whom management might be debatable was presented to gather additional insight. The survey was disseminated to members of the Society for Neuro-Oncology (SNO) and responses were collected from March 16 to July 10, 2018. Results A total of 131 responses were collected. Sixty-three of 117 (54%) respondents thought an RCT would not be ethical, 39 of 117 (33%) would consider participating, and 56 of 117 (48%) believed an RCT would be valuable for determining the differing roles of biopsy, surgery, and observation. This was exemplified by an evenly distributed selection of the latter management options for our sample case. Eighty-three of 120 (69.2%) respondents did not believe in equipoise for DLGG patients. Quality of life and overall survival were deemed equally important end points for a putative RCT. Conclusions Based on our survey, it is evident that management of certain DLGG patients is not well defined and an RCT may be justified. As with any surgical RCT, logistic challenges are anticipated. Robust patient-relevant end points and standardization of perioperative adjuncts are necessary if a surgical RCT is undertaken.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Karanbir Brar
- Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Michael D Cusimano
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Biterge-Sut B. A comprehensive analysis of the angiogenesis-related genes in glioblastoma multiforme vs. brain lower grade glioma. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 78:34-38. [PMID: 32074192 DOI: 10.1590/0004-282x20190131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Brain tumors are one of the most common causes of cancer-related deaths around the world. Angiogenesis is critical in high-grade malignant gliomas, such as glioblastoma multiforme. The aim of this study is to comparatively analyze the angiogenesis-related genes, namely VEGFA, VEGFB, KDR, CXCL8, CXCR1 and CXCR2 in LGG vs. GBM to identify molecular distinctions using datasets available on The Cancer Genome Atlas (TCGA). METHODS DNA sequencing and mRNA expression data for 514 brain lower grade glioma (LGG) and 592 glioblastoma multiforme (GBM) patients were acquired from The Cancer Genome Atlas (TCGA), and the genetic alterations and expression levels of the selected genes were analyzed. RESULTS We identified six distinct KDR mutations in the LGG patients and 18 distinct KDR mutations in the GBM patients, including missense and nonsense mutations, frame shift deletion and altered splice region. Furthermore, VEGFA and CXCL8 were significantly overexpressed within GBM patients. CONCLUSIONS VEGFA and CXCL8 are important factors for angiogenesis, which are suggested to have significant roles during tumorigenesis. Our results provide further evidence that VEGFA and CXCL8 could induce angiogenesis and promote LGG to progress into GBM. These findings could be useful in developing novel targeted therapeutics approaches in the future.
Collapse
Affiliation(s)
- Burcu Biterge-Sut
- Nigde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biology, Nigde, Turkey
| |
Collapse
|
17
|
Oughourlian TC, Yao J, Schlossman J, Raymond C, Ji M, Tatekawa H, Salamon N, Pope WB, Czernin J, Nghiemphu PL, Lai A, Cloughesy TF, Ellingson BM. Rate of change in maximum 18F-FDOPA PET uptake and non-enhancing tumor volume predict malignant transformation and overall survival in low-grade gliomas. J Neurooncol 2020; 147:135-145. [PMID: 31981013 DOI: 10.1007/s11060-020-03407-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/18/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine whether the rate of change in maximum 18F-FDOPA PET uptake and the rate of change in non-enhancing tumor volume could predict malignant transformation and residual overall survival (OS) in low grade glioma (LGG) patients who received serial 18F-FDOPA PET and MRI scans. METHODS 27 LGG patients with ≥ 2 18F-FDOPA PET and MRI scans between 2003 and 2016 were included. The rate of change in FLAIR volume (uL/day) and maximum normalized 18F-FDOPA specific uptake value (nSUVmax/month), were compared between histological and molecular subtypes. General linear models (GLMs) were used to integrate clinical information with MR-PET measurements to predict malignant transformation. Cox univariate and multivariable regression analyses were performed to identify imaging and clinical risk factors related to OS. RESULTS A GLM using patient age, treatment, the rate of change in FLAIR and 18F-FDOPA nSUVmax could predict malignant transformation with > 67% sensitivity and specificity (AUC = 0.7556, P = 0.0248). A significant association was observed between OS and continuous rates of change in PET uptake (HR = 1.0212, P = 0.0034). Cox multivariable analysis confirmed that continuous measures of the rate of change in PET uptake was an independent predictor of OS (HR = 1.0242, P = 0.0033); however, stratification of patients based on increasing or decreasing rate of change in FLAIR (HR = 2.220, P = 0.025), PET uptake (HR = 2.148, P = 0.0311), or both FLAIR and PET (HR = 2.354, P = 0.0135) predicted OS. CONCLUSIONS The change in maximum normalized 18F-FDOPA PET uptake, with or without clinical information and rate of change in tumor volume, may be useful for predicting the risk of malignant transformation and estimating residual survival in patients with LGG.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Jacob Schlossman
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew Ji
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroyuki Tatekawa
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Neuroscience Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Bioengineering, Henry Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA. .,UCLA Brain Tumor Imaging Laboratory, Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
| |
Collapse
|
18
|
Ghaffari-Rafi A, Samandouras G. Effect of Treatment Modalities on Progression-Free Survival and Overall Survival in Molecularly Subtyped World Health Organization Grade II Diffuse Gliomas: A Systematic Review. World Neurosurg 2020; 133:366-380.e2. [DOI: 10.1016/j.wneu.2019.08.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/20/2022]
|
19
|
Zienius K, Chak-Lam I, Park J, Ozawa M, Hamilton W, Weller D, Summers D, Porteous L, Mohiuddin S, Keeney E, Hollingworth W, Ben-Shlomo Y, Grant R, Brennan PM. Direct access CT for suspicion of brain tumour: an analysis of referral pathways in a population-based patient group. BMC FAMILY PRACTICE 2019; 20:118. [PMID: 31431191 PMCID: PMC6702708 DOI: 10.1186/s12875-019-1003-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain tumour patients see their primary care doctor on average three or more times before diagnosis, so there may be an opportunity to identify 'at risk' patients earlier. Suspecting a brain tumour diagnosis is difficult because brain tumour-related symptoms are typically non-specific. METHODS We explored the predictive value of referral guidelines (Kernick and NICE 2005) for brain imaging where a tumour is suspected, in a population-based patient group referred for direct access CT of the head. A consensus panel reviewed whether non-tumour findings were clinically important or whether further investigation was necessary. RESULTS Over a 5-year period, 3257 head scans were performed; 318 scans were excluded according to pre-specified criteria. 53 patients (1.8%) were reported to have intracranial tumours, of which 42 were significant (diagnostic yield of 1.43%). There were no false negative CT scans for tumour. With symptom-based referral guidelines primary care doctors can identify patients with a 3% positive predictive value (PPV). 559 patients had non-tumour findings, 31% of which were deemed clinically significant. In 34% of these 559 patients, referral for further imaging and/or specialist assessment from primary care was still thought warranted. CONCLUSION Existing referral guidelines are insufficient to stratify patients adequately based on their symptoms, according to the likelihood that a tumour will be found on brain imaging. Identification of non-tumour findings may be significant for patients and earlier specialist input into interpretation of these images may be beneficial. Improving guidelines to better identify patients at risk of a brain tumour should be a priority, to improve speed of diagnosis, and reduce unnecessary imaging and costs. Future guidelines may incorporate groups of symptoms, clinical signs and tests to improve the predictive value.
Collapse
Affiliation(s)
- K. Zienius
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ip Chak-Lam
- University of Edinburgh Medical School, Edinburgh, UK
| | - J. Park
- University of Edinburgh Medical School, Edinburgh, UK
| | - M. Ozawa
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - W. Hamilton
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - D. Weller
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - D. Summers
- Department of Neuroradiology, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - L. Porteous
- North Berwick Group Practice, North Berwick, East Lothian UK
| | - S. Mohiuddin
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - E. Keeney
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - W. Hollingworth
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Y. Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - R. Grant
- Department of Clinical Neurosciences, NHS Lothian, Western General Hospital, Edinburgh, UK
| | - P. M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Clinical Neurosciences, NHS Lothian, Western General Hospital, Edinburgh, UK
| |
Collapse
|
20
|
Shaw TB, Jeffree RL, Thomas P, Goodman S, Debowski M, Lwin Z, Chua B. Diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of glioma. J Med Imaging Radiat Oncol 2019; 63:650-656. [PMID: 31368665 DOI: 10.1111/1754-9485.12929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/25/2019] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Identifying glioma grade through imaging allows clinicians to recommend and accurately direct treatment. We sought to quantify the utility of FDG-PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography), alone and in combination with MRI, in identifying high-grade regions of glioma. METHODS This is a retrospective review of patients who had an FDG-PET/CT performed as part of the workup of suspected glioma or in follow-up of known glioma. FDG-PET/CT scans were reviewed and uptake in the identifiable lesion coded as none, diffusely or focally increased. Patients also underwent gadolinium-enhanced MRI, noting regions of contrast enhancement. Sensitivity, specificity, positive and negative predictive values (PPV and NPV) were calculated for identification of high-grade histology (WHO III or IV, or metastatic disease) obtained post-FDG-PET/CT. RESULTS Thirty-three patients had 36 FDG-PET/CT and MRI scans followed by histological confirmation (biopsy or debulking). Increased FDG uptake demonstrated a sensitivity of 59% and specificity of 79%, PPV of 81% and NPV of 55% for identification of high-grade histology. MRI demonstrated a sensitivity of 77% and specificity of 86%, PPV of 89% and NPV of 71% for identification of high-grade histology. Only 64% of MRI and FDG-PET/CT scan series were concordant. When FDG-PET/CT and MRI were concordant, a specificity of 100% and PPV of 100% was achieved, however, sensitivity was 79% and NPV was 75%. CONCLUSION The combination of FDG-PET/CT and gadolinium-enhanced MRI demonstrated marked improvement in identifying potential high-grade disease over each modality alone. Increased FDG uptake without gadolinium enhancement rarely occurred and identified high-grade histology in a small number of patients. Due to limited sensitivity and NPV, a negative FDG-PET/CT alone, or in combination with MRI, should not guide a decision for observation where surgery would otherwise be recommended.
Collapse
Affiliation(s)
- Tristan B Shaw
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Griffith University, Gold Coast, Queensland, Australia
| | - Rosalind L Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,University of Queensland, St. Lucia, Queensland, Australia
| | - Paul Thomas
- University of Queensland, St. Lucia, Queensland, Australia.,Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Steven Goodman
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Maciej Debowski
- University of Queensland, St. Lucia, Queensland, Australia.,Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Zarnie Lwin
- University of Queensland, St. Lucia, Queensland, Australia.,Department of Medical Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Benjamin Chua
- Department of Radiation Oncology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
21
|
Bose R, Narang KS, Bhangale D, Kedia R, Sharma V, Jha AN. Survival trends in glioma: Experience at a tertiary care centre. Neurol India 2019; 65:1295-1301. [PMID: 29133704 DOI: 10.4103/0028-3886.217968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Even after decades of research in the field of gliomas, the overall prognosis is still quite dismal. Several factors have been proposed that affect the outcome and survival length of patients with a glioma. Here, we present a series of 471 patients, who underwent surgical resection of their glioma at a tertiary level neurosurgical centre. MATERIALS AND METHODS We noted retrospective data of patients' age, histological tumor grade, and whether or not intraoperative magnetic resonance imaging (MRI) was used, and assessed the survival length of these patients from the day of surgery. RESULTS The overall survival in our series was approximately 14 months. Predictably, those with age less than 40 years and those with Karnofsky performance score (KPS) ≥80 had longer survival than those with a higher age and KPS <80; those with World Health Organisation (WHO) grade IV lesions had the shortest survival length compared to all the other grades. However, while comparing survival among other tumor grades, we did not find significant difference. Further, use of intraoperative MRI did not offer any statistically significant difference in survival. CONCLUSION In addition to the conventional prognostic factors we need more definate ways to accurately predict survival in patients harbouring a glioma. Probably, assessing molecular characteristics of the individual tumors, such as presence of isocitrate dehydrogenase (IDH) mutation versus wild-type IDH, would help us in predicting survival more accurately.
Collapse
Affiliation(s)
- Ratnadip Bose
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| | - Karanjit S Narang
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| | - Deepak Bhangale
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| | - Rishabh Kedia
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| | - Vikas Sharma
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| | - Ajaya N Jha
- Department of Neurosurgery, Institute of Neurosciences, Medanta The Medicity, Gurgaon, Haryana, India
| |
Collapse
|
22
|
Molinari E, Curran OE, Grant R. Clinical importance of molecular markers of adult diffuse glioma. Pract Neurol 2019; 19:412-416. [PMID: 31175262 DOI: 10.1136/practneurol-2018-002116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2019] [Indexed: 11/04/2022]
Abstract
In 2016, the WHO incorporated molecular markers, in addition to histology, into the diagnostic classification of central nervous system (CNS) tumours. This improves diagnostic accuracy and prognostication: oligo-astrocytoma no longer exists as a clinical entity; isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted oligodendroglioma is a smaller category with better prognosis; IDH wild-type 'low-grade' glioma has a much poorer prognosis; and glioblastoma is divided into IDH mutant (with an better prognosis than pre-2016 glioblastoma) and IDH wild type (with a poorer prognosis). Previous advice based on phenotype alone will change with respect to median survival, best management plan and response to treatment. There are implications for routine neuropathology reporting and future trial design. Cases that are difficult to classify may need more advanced molecular genetic classification through DNA methylation-based classification of CNS tumours (Heidelberg Classifier). We discuss the practical implications.
Collapse
Affiliation(s)
- Emanuela Molinari
- Department of Neurology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Olimpia E Curran
- Neuropathology Unit, Department of Pathology, Western General Hospital, Edinburgh, UK
| | - Robin Grant
- Department of Neurology and Neurosurgery, Western General Hospital, Edinburgh, UK
| |
Collapse
|
23
|
Long-term outcomes and late adverse effects of a prospective study on proton radiotherapy for patients with low-grade glioma. Radiother Oncol 2019; 137:95-101. [PMID: 31082632 DOI: 10.1016/j.radonc.2019.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/13/2019] [Accepted: 04/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients with low-grade gliomas (LGG) can survive years with their illness. Proton radiotherapy (PRT) can reduce off-target dose and decrease the risk of treatment-related morbidity. We examined long-term morbidity following proton therapy in this updated prospective cohort of patients with LGG. METHODS Twenty patients with LGG were enrolled prospectively and received PRT to 54 Gy(RBE) in 30 fractions. Comprehensive baseline and longitudinal assessments of toxicity, neurocognitive and neuroendocrine function, quality of life, and survival outcomes were performed up to 5 years following treatment. RESULTS Six patients died (all of disease) and six had progression of disease. Median follow-up was 6.8 years for the 14 patients alive at time of reporting. Median progression-free survival (PFS) was 4.5 years. Of tumors tested for molecular markers, 71% carried the IDH1-R132H mutation and 29% had 1p/19q co-deletion. There was no overall decline in neurocognitive function; however, a subset of five patients with reported cognitive symptoms after radiation therapy had progressively worse function by neurocognitive testing. Six patients developed neuroendocrine deficiencies, five of which received Dmax ≥20 Gy(RBE) to the hypothalamus-pituitary axis (HPA). Most long-term toxicities developed within 2 years after radiation therapy. CONCLUSIONS The majority of patients with LGG who received proton therapy retained stable cognitive and neuroendocrine function. The IDH1-R132H mutation was present in the majority, while 1p/19q loss was present in a minority. A subset of patients developed neuroendocrine deficiencies and was more common in those with higher dose to the HPA.
Collapse
|
24
|
Abrigo JM, Fountain DM, Provenzale JM, Law EK, Kwong JSW, Hart MG, Tam WWS. Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation. Cochrane Database Syst Rev 2018; 1:CD011551. [PMID: 29357120 PMCID: PMC6491341 DOI: 10.1002/14651858.cd011551.pub2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gliomas are the most common primary brain tumour. They are graded using the WHO classification system, with Grade II-IV astrocytomas, oligodendrogliomas and oligoastrocytomas. Low-grade gliomas (LGGs) are WHO Grade II infiltrative brain tumours that typically appear solid and non-enhancing on magnetic resonance imaging (MRI) scans. People with LGG often have little or no neurologic deficit, so may opt for a watch-and-wait-approach over surgical resection, radiotherapy or both, as surgery can result in early neurologic disability. Occasionally, high-grade gliomas (HGGs, WHO Grade III and IV) may have the same MRI appearance as LGGs. Taking a watch-and-wait approach could be detrimental for the patient if the tumour progresses quickly. Advanced imaging techniques are increasingly used in clinical practice to predict the grade of the tumour and to aid clinical decision of when to intervene surgically. One such advanced imaging technique is magnetic resonance (MR) perfusion, which detects abnormal haemodynamic changes related to increased angiogenesis and vascular permeability, or "leakiness" that occur with aggressive tumour histology. These are reflected by changes in cerebral blood volume (CBV) expressed as rCBV (ratio of tumoural CBV to normal appearing white matter CBV) and permeability, measured by Ktrans. OBJECTIVES To determine the diagnostic test accuracy of MR perfusion for identifying patients with primary solid and non-enhancing LGGs (WHO Grade II) at first presentation in children and adults. In performing the quantitative analysis for this review, patients with LGGs were considered disease positive while patients with HGGs were considered disease negative.To determine what clinical features and methodological features affect the accuracy of MR perfusion. SEARCH METHODS Our search strategy used two concepts: (1) glioma and the various histologies of interest, and (2) MR perfusion. We used structured search strategies appropriate for each database searched, which included: MEDLINE (Ovid SP), Embase (Ovid SP), and Web of Science Core Collection (Science Citation Index Expanded and Conference Proceedings Citation Index). The most recent search for this review was run on 9 November 2016.We also identified 'grey literature' from online records of conference proceedings from the American College of Radiology, European Society of Radiology, American Society of Neuroradiology and European Society of Neuroradiology in the last 20 years. SELECTION CRITERIA The titles and abstracts from the search results were screened to obtain full-text articles for inclusion or exclusion. We contacted authors to clarify or obtain missing/unpublished data.We included cross-sectional studies that performed dynamic susceptibility (DSC) or dynamic contrast-enhanced (DCE) MR perfusion or both of untreated LGGs and HGGs, and where rCBV and/or Ktrans values were reported. We selected participants with solid and non-enhancing gliomas who underwent MR perfusion within two months prior to histological confirmation. We excluded studies on participants who received radiation or chemotherapy before MR perfusion, or those without histologic confirmation. DATA COLLECTION AND ANALYSIS Two review authors extracted information on study characteristics and data, and assessed the methodological quality using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. We present a summary of the study characteristics and QUADAS-2 results, and rate studies as good quality when they have low risk of bias in the domains of reference standard of tissue diagnosis and flow and timing between MR perfusion and tissue diagnosis.In the quantitative analysis, LGGs were considered disease positive, while HGGs were disease negative. The sensitivity refers to the proportion of LGGs detected by MR perfusion, and specificity as the proportion of detected HGGs. We constructed two-by-two tables with true positives and false negatives as the number of correctly and incorrectly diagnosed LGG, respectively, while true negatives and false positives are the number of correctly and incorrectly diagnosed HGG, respectively.Meta-analysis was performed on studies with two-by-two tables, with further sensitivity analysis using good quality studies. Limited data precluded regression analysis to explore heterogeneity but subgroup analysis was performed on tumour histology groups. MAIN RESULTS Seven studies with small sample sizes (4 to 48) met our inclusion criteria. These were mostly conducted in university hospitals and mostly recruited adult patients. All studies performed DSC MR perfusion and described heterogeneous acquisition and post-processing methods. Only one study performed DCE MR perfusion, precluding quantitative analysis.Using patient-level data allowed selection of individual participants relevant to the review, with generally low risks of bias for the participant selection, reference standard and flow and timing domains. Most studies did not use a pre-specified threshold, which was considered a significant source of bias, however this did not affect quantitative analysis as we adopted a common rCBV threshold of 1.75 for the review. Concerns regarding applicability were low.From published and unpublished data, 115 participants were selected and included in the meta-analysis. Average rCBV (range) of 83 LGGs and 32 HGGs were 1.29 (0.01 to 5.10) and 1.89 (0.30 to 6.51), respectively. Using the widely accepted rCBV threshold of <1.75 to differentiate LGG from HGG, the summary sensitivity/specificity estimates were 0.83 (95% CI 0.66 to 0.93)/0.48 (95% CI 0.09 to 0.90). Sensitivity analysis using five good quality studies yielded sensitivity/specificity of 0.80 (95% CI 0.61 to 0.91)/0.67 (95% CI 0.07 to 0.98). Subgroup analysis for tumour histology showed sensitivity/specificity of 0.92 (95% CI 0.55 to 0.99)/0.42 (95% CI 0.02 to 0.95) in astrocytomas (6 studies, 55 participants) and 0.77 (95% CI 0.46 to 0.93)/0.53 (95% CI 0.14 to 0.88) in oligodendrogliomas+oligoastrocytomas (6 studies, 56 participants). Data were too sparse to investigate any differences across subgroups. AUTHORS' CONCLUSIONS The limited available evidence precludes reliable estimation of the performance of DSC MR perfusion-derived rCBV for the identification of grade in untreated solid and non-enhancing LGG from that of HGG. Pooled data yielded a wide range of estimates for both sensitivity (range 66% to 93% for detection of LGGs) and specificity (range 9% to 90% for detection of HGGs). Other clinical and methodological features affecting accuracy of the technique could not be determined from the limited data. A larger sample size of both LGG and HGG, preferably using a standardised scanning approach and with an updated reference standard incorporating molecular profiles, is required for a definite conclusion.
Collapse
Affiliation(s)
- Jill M Abrigo
- The Chinese University of Hong KongDepartment of Imaging and Interventional RadiologyPrince of Wales Hospital30 Ngan Shing StShatinHong Kong
| | - Daniel M Fountain
- Addenbrookes HospitalAcademic Division of Neurosurgery, Department of Clinical NeurosciencesBox 167CambridgeUKCB2 0QQ
| | - James M Provenzale
- Duke University Medical CenterDepartment of RadiologyBox 3808DurhamNCUSA27710
| | - Eric K Law
- The Chinese University of Hong KongDepartment of Imaging and Interventional RadiologyPrince of Wales Hospital30 Ngan Shing StShatinHong Kong
| | - Joey SW Kwong
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong KongDepartment of Epidemiology and BiostatisticsPrince of Wales HospitalShatinN.T.Hong Kong
| | - Michael G Hart
- Addenbrookes HospitalAcademic Division of Neurosurgery, Department of Clinical NeurosciencesBox 167CambridgeUKCB2 0QQ
| | - Wilson Wai San Tam
- National University of Singapore, National University Health SystemAlice Lee Centre for Nursing StudiesSingaporeSingapore
| | | |
Collapse
|
25
|
Clinical Applications of Contrast-Enhanced Perfusion MRI Techniques in Gliomas: Recent Advances and Current Challenges. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7064120. [PMID: 29097933 PMCID: PMC5612612 DOI: 10.1155/2017/7064120] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 01/12/2023]
Abstract
Gliomas possess complex and heterogeneous vasculatures with abnormal hemodynamics. Despite considerable advances in diagnostic and therapeutic techniques for improving tumor management and patient care in recent years, the prognosis of malignant gliomas remains dismal. Perfusion-weighted magnetic resonance imaging techniques that could noninvasively provide superior information on vascular functionality have attracted much attention for evaluating brain tumors. However, nonconsensus imaging protocols and postprocessing analysis among different institutions impede their integration into standard-of-care imaging in clinic. And there have been very few studies providing a comprehensive evidence-based and systematic summary. This review first outlines the status of glioma theranostics and tumor-associated vascular pathology and then presents an overview of the principles of dynamic contrast-enhanced MRI (DCE-MRI) and dynamic susceptibility contrast-MRI (DSC-MRI), with emphasis on their recent clinical applications in gliomas including tumor grading, identification of molecular characteristics, differentiation of glioma from other brain tumors, treatment response assessment, and predicting prognosis. Current challenges and future perspectives are also highlighted.
Collapse
|
26
|
Powell RT, Olar A, Narang S, Rao G, Sulman E, Fuller GN, Rao A. Identification of Histological Correlates of Overall Survival in Lower Grade Gliomas Using a Bag-of-words Paradigm: A Preliminary Analysis Based on Hematoxylin & Eosin Stained Slides from the Lower Grade Glioma Cohort of The Cancer Genome Atlas. J Pathol Inform 2017; 8:9. [PMID: 28382223 PMCID: PMC5364741 DOI: 10.4103/jpi.jpi_43_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/21/2017] [Indexed: 11/04/2022] Open
Abstract
Background: Glioma, the most common primary brain neoplasm, describes a heterogeneous tumor of multiple histologic subtypes and cellular origins. At clinical presentation, gliomas are graded according to the World Health Organization guidelines (WHO), which reflect the malignant characteristics of the tumor based on histopathological and molecular features. Lower grade diffuse gliomas (LGGs) (WHO Grade II–III) have fewer malignant characteristics than high-grade gliomas (WHO Grade IV), and a better clinical prognosis, however, accurate discrimination of overall survival (OS) remains a challenge. In this study, we aimed to identify tissue-derived image features using a machine learning approach to predict OS in a mixed histology and grade cohort of lower grade glioma patients. To achieve this aim, we used H and E stained slides from the public LGG cohort of The Cancer Genome Atlas (TCGA) to create a machine learned dictionary of “image-derived visual words” associated with OS. We then evaluated the combined efficacy of using these visual words in predicting short versus long OS by training a generalized machine learning model. Finally, we mapped these predictive visual words back to molecular signaling cascades to infer potential drivers of the machine learned survival-associated phenotypes. Methods: We analyzed digitized histological sections downloaded from the LGG cohort of TCGA using a bag-of-words approach. This method identified a diverse set of histological patterns that were further correlated with OS, histology, and molecular signaling activity using Cox regression, analysis of variance, and Spearman correlation, respectively. A support vector machine (SVM) model was constructed to discriminate patients into short and long OS groups dichotomized at 24-month. Results: This method identified disease-relevant phenotypes associated with OS, some of which are correlated with disease-associated molecular pathways. From these image-derived phenotypes, a generalized SVM model which could discriminate 24-month OS (area under the curve, 0.76) was obtained. Conclusion: Here, we demonstrated one potential strategy to incorporate image features derived from H and E stained slides into predictive models of OS. In addition, we showed how these image-derived phenotypic characteristics correlate with molecular signaling activity underlying the etiology or behavior of LGG.
Collapse
Affiliation(s)
- Reid Trenton Powell
- Center for Translational Cancer Research, Texas A and M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Adriana Olar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shivali Narang
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erik Sulman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gregory N Fuller
- Department of Pathology (Section of Neuropathology), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arvind Rao
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
27
|
Xu R, Pisapia D, Greenfield JP. Malignant Transformation in Glioma Steered by an Angiogenic Switch: Defining a Role for Bone Marrow-Derived Cells. Cureus 2016; 8:e471. [PMID: 26973806 PMCID: PMC4772998 DOI: 10.7759/cureus.471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low-grade gliomas, such as pilocytic astrocytoma and subependymoma, are often characterized as benign tumors due to their relative circumscription radiologically and typically non-aggressive biologic behavior. In contrast, low-grades that are by their nature diffusely infiltrative, such as diffuse astrocytomas and oligodendrogliomas, have the potential to transform into malignant high-grade counterparts and, given sufficient time, invariably do so. These high-grade gliomas carry very poor prognoses and are largely incurable, warranting a closer look at what causes this adverse transition. A key characteristic that distinguishes low- and high-grade gliomas is neovascularization: it is absent in low-grade gliomas, but prolific in high-grade gliomas, providing the tumor with ample blood supply for exponential growth. It has been well described in the literature that bone marrow-derived cells (BMDCs) may contribute to the angiogenic switch that is responsible for malignant transformation of low-grade gliomas. In this review, we will summarize the current literature on BMDCs and their known contribution to angiogenesis-associated tumor growth in gliomas.
Collapse
Affiliation(s)
- Raymond Xu
- Neurological Surgery, Weill Cornell Medical College
| | | | - Jeffrey P Greenfield
- Neurological Surgery, Weill Cornell Medical College ; New York Presbyterian Hospital
| |
Collapse
|
28
|
Akkus Z, Sedlar J, Coufalova L, Korfiatis P, Kline TL, Warner JD, Agrawal J, Erickson BJ. Semi-automated segmentation of pre-operative low grade gliomas in magnetic resonance imaging. Cancer Imaging 2015; 15:12. [PMID: 26268363 PMCID: PMC4535671 DOI: 10.1186/s40644-015-0047-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/06/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Segmentation of pre-operative low-grade gliomas (LGGs) from magnetic resonance imaging is a crucial step for studying imaging biomarkers. However, segmentation of LGGs is particularly challenging because they rarely enhance after gadolinium administration. Like other gliomas, they have irregular tumor shape, heterogeneous composition, ill-defined tumor boundaries, and limited number of image types. To overcome these challenges we propose a semi-automated segmentation method that relies only on T2-weighted (T2W) and optionally post-contrast T1-weighted (T1W) images. METHODS First, the user draws a region-of-interest (ROI) that completely encloses the tumor and some normal tissue. Second, a normal brain atlas and post-contrast T1W images are registered to T2W images. Third, the posterior probability of each pixel/voxel belonging to normal and abnormal tissues is calculated based on information derived from the atlas and ROI. Finally, geodesic active contours use the probability map of the tumor to shrink the ROI until optimal tumor boundaries are found. This method was validated against the true segmentation (TS) of 30 LGG patients for both 2D (1 slice) and 3D. The TS was obtained from manual segmentations of three experts using the Simultaneous Truth and Performance Level Estimation (STAPLE) software. Dice and Jaccard indices and other descriptive statistics were computed for the proposed method, as well as the experts' segmentation versus the TS. We also tested the method with the BraTS datasets, which supply expert segmentations. RESULTS AND DISCUSSION For 2D segmentation vs. TS, the mean Dice index was 0.90 ± 0.06 (standard deviation), sensitivity was 0.92, and specificity was 0.99. For 3D segmentation vs. TS, the mean Dice index was 0.89 ± 0.06, sensitivity was 0.91, and specificity was 0.99. The automated results are comparable with the experts' manual segmentation results. CONCLUSIONS We present an accurate, robust, efficient, and reproducible segmentation method for pre-operative LGGs.
Collapse
Affiliation(s)
- Zeynettin Akkus
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Jiri Sedlar
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Lucie Coufalova
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
- Neurosurgical Department of 1st Faculty of Medicine of Charles University, Military University Hospital, Prague, Czech Republic.
| | - Panagiotis Korfiatis
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Joshua D Warner
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Jay Agrawal
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Bradley J Erickson
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
29
|
Holmes ACN, Adams SJ, Hall S, Rosenthal MA, Drummond KJ. Liaison psychiatry in a central nervous system tumor service. Neurooncol Pract 2015; 2:88-92. [PMID: 31386066 DOI: 10.1093/nop/npv001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/13/2022] Open
Abstract
Background Tumors of the central nervous system (CNS) have physical and psychological effects that commonly interact and change over time. Although well suited to addressing problems at the interface between physical and psychological medicine, the role of the consultation-liaison psychiatrist has not been previously described in the management of these patients. The purpose of this paper is to summarize the experience of psychiatry liaison attachment within a CNS tumor service and to reflect on its utility within a complex multidisciplinary environment. Methods A retrospective file review was performed on all cases seen by a psychiatrist in a CNS tumor service over the previous 5 years. A simple thematic inductive analysis was conducted of the common problems experienced by patients and their management by the psychiatrist and within the team. Results Five common themes were identified: (i) facilitating adaptation to diagnosis; (ii) supporting living with lower-grade tumors; (iii) managing mental disorders; (iv) neuropsychiatric symptoms of tumor progression; and (v) grief and uncertainty in the advanced stages of illness. The capacity of the psychiatrist to understand and integrate the clinical, pathological, radiological, and treatment information, in communication with colleagues, helped address these challenges. Conclusions Psychological challenges in CNS tumor patients have both psychological and neurological underpinnings. In our experience, the addition of a liaison psychiatrist to a CNS tumor service was efficient and effective in improving patient management and led to enhanced communication and decision-making within the team.
Collapse
Affiliation(s)
- Alex C N Holmes
- Consultation-liaison Psychiatry, Royal Melbourne Hospital, Parkville, Australia (A.C.N.H., S.J.A., S.H.); Department of Psychiatry, University of Melbourne, Parkville, Australia (A.C.N.H.); Department of Medicine, University of Melbourne, Parkville, Australia (M.A.R.); Department of Oncology, Royal Melbourne Hospital, Parkville,Australia (M.A.R.); Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia (K.J.D.); Department of Surgery, University of Melbourne, Parkville, Australia (K.J.D.)
| | - Sophia J Adams
- Consultation-liaison Psychiatry, Royal Melbourne Hospital, Parkville, Australia (A.C.N.H., S.J.A., S.H.); Department of Psychiatry, University of Melbourne, Parkville, Australia (A.C.N.H.); Department of Medicine, University of Melbourne, Parkville, Australia (M.A.R.); Department of Oncology, Royal Melbourne Hospital, Parkville,Australia (M.A.R.); Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia (K.J.D.); Department of Surgery, University of Melbourne, Parkville, Australia (K.J.D.)
| | - Scott Hall
- Consultation-liaison Psychiatry, Royal Melbourne Hospital, Parkville, Australia (A.C.N.H., S.J.A., S.H.); Department of Psychiatry, University of Melbourne, Parkville, Australia (A.C.N.H.); Department of Medicine, University of Melbourne, Parkville, Australia (M.A.R.); Department of Oncology, Royal Melbourne Hospital, Parkville,Australia (M.A.R.); Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia (K.J.D.); Department of Surgery, University of Melbourne, Parkville, Australia (K.J.D.)
| | - Mark A Rosenthal
- Consultation-liaison Psychiatry, Royal Melbourne Hospital, Parkville, Australia (A.C.N.H., S.J.A., S.H.); Department of Psychiatry, University of Melbourne, Parkville, Australia (A.C.N.H.); Department of Medicine, University of Melbourne, Parkville, Australia (M.A.R.); Department of Oncology, Royal Melbourne Hospital, Parkville,Australia (M.A.R.); Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia (K.J.D.); Department of Surgery, University of Melbourne, Parkville, Australia (K.J.D.)
| | - Katharine J Drummond
- Consultation-liaison Psychiatry, Royal Melbourne Hospital, Parkville, Australia (A.C.N.H., S.J.A., S.H.); Department of Psychiatry, University of Melbourne, Parkville, Australia (A.C.N.H.); Department of Medicine, University of Melbourne, Parkville, Australia (M.A.R.); Department of Oncology, Royal Melbourne Hospital, Parkville,Australia (M.A.R.); Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia (K.J.D.); Department of Surgery, University of Melbourne, Parkville, Australia (K.J.D.)
| |
Collapse
|
30
|
Weizman L, Sira LB, Joskowicz L, Rubin DL, Yeom KW, Constantini S, Shofty B, Bashat DB. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies. Med Phys 2014; 41:052303. [PMID: 24784396 PMCID: PMC4000396 DOI: 10.1118/1.4871040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/19/2014] [Accepted: 03/26/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. METHODS The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a "gold standard" was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. RESULTS Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. CONCLUSIONS The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior.
Collapse
Affiliation(s)
- Lior Weizman
- School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liat Ben Sira
- Department of Radiology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv 64239, Israel
| | - Leo Joskowicz
- School of Engineering and Computer Science and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel L Rubin
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Shlomi Constantini
- Tel Aviv Medical Center, Dana Children's Hospital, Tel Aviv University, Tel Aviv 64239, Israel
| | - Ben Shofty
- Tel Aviv Medical Center, Dana Children's Hospital, Tel Aviv University, Tel Aviv 64239, Israel
| | - Dafna Ben Bashat
- Tel Aviv Medical Center, Functional Brain Center, Tel Aviv University, Tel Aviv 64239, Israel
| |
Collapse
|
31
|
Picht T, Schulz J, Vajkoczy P. The preoperative use of navigated transcranial magnetic stimulation facilitates early resection of suspected low-grade gliomas in the motor cortex. Acta Neurochir (Wien) 2013; 155:1813-21. [PMID: 23996233 DOI: 10.1007/s00701-013-1839-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Resection is recommended for low-grade gliomas, but often it is not performed if the tumor is suspected of invading the primary motor cortex. The study aim is to assess what influence preoperative navigated transcranial magnetic stimulation (nTMS) has on the treatment strategy and clinical outcome for suspected low-grade gliomas in presumed motor eloquent location. METHODS This paper reports on all our patients with gliomas in the primary motor cortex that were non-enhancing on MRI, since we began using nTMS (n = 11). For the comparison group, we identified the 11 most recent such patients just before we started using nTMS. RESULTS Exact delineation of motor functional versus non-functional cortical tissue was provided by nTMS in all cases, also within the area of altered FLAIR signal. In 6 out of 11 cases, the nTMS mapping result changed the treatment plan towards early and more extensive resection. Only one nTMS patient had another seizure within the follow-up period, whereas four patients in the comparison group had further seizures. In the nTMS group, 1 of 4 patients with pre-op neurological deficits improved by one year; whereas the comparison group had increased neurological deficits in 3 of the 8 patients not having surgery. The median (range) change of tumor volume from baseline to 1 year was -83 % (-67 % to -100 %) in the nTMS group, but +12 % (+40 % to -56 %) in the comparison group (p < 0.001). CONCLUSIONS nTMS provides accurate motor mapping results also in infiltrative gliomas and enables more frequent and more extensive surgical resection of non-enhancing gliomas in or near the primary motor cortex. The substantial differences observed here in neurological and oncological outcomes suggest that further comparative research is warranted.
Collapse
|
32
|
Kumar VA, Hamilton J, Hayman LA, Kumar AJ, Rao G, Weinberg JS, Sawaya R, Prabhu SS. Deformable Anatomic Templates Improve Analysis of Gliomas With Minimal Mass Effect in Eloquent Areas. Neurosurgery 2013; 73:534-42. [DOI: 10.1227/01.neu.0000431479.87160.e2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Despite improvements in advanced magnetic resonance imaging and intraoperative mapping, cases remain in which it is difficult to determine whether viable eloquent structures are involved by a glioma. A novel software program, deformable anatomic templates (DAT), rapidly embeds the normal location of eloquent cortex and functional tracts in the magnetic resonance images of glioma-bearing brain.
OBJECTIVE:
To investigate the feasibility of the DAT technique in patients with gliomas related to eloquent brain.
METHODS:
Forty cases of gliomas (grade II-IV) with minimal mass effect were referred for a prospective preoperative and postoperative DAT analysis. The DAT results were compared with the patient's functional magnetic resonance imaging, diffusion tensor imaging, operative stimulation, and new postoperative clinical deficits.
RESULTS:
Fifteen of the 40 glioma patients had overlap between tumor and eloquent structures. Immediate postoperative neurological deficits were seen in 9 cases in which the DAT showed the eloquent area both within the tumor and within or at the edge of the resection cavity. In 6 cases with no deficits, DAT placed the eloquent area in the tumor but outside the resection cavity.
CONCLUSION:
This is proof of concept that DAT can improve the analysis of diffuse gliomas of any grade by efficiently alerting the surgeon to the possibility of eloquent area invasion. The technique is especially helpful in diffuse glioma because these tumors tend to infiltrate rather than displace eloquent structures. DAT is limited by tract displacement in gliomas that produces moderate to severe mass effect.
Collapse
Affiliation(s)
| | | | | | | | - Ganesh Rao
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey S. Weinberg
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Sawaya
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sujit S. Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Garcia Pulido P, Neal J, Halpin S, Hamandi K. Multicentric oligodendroglioma: Case report and review of the literature. Seizure 2013; 22:480-2. [DOI: 10.1016/j.seizure.2013.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/25/2022] Open
|
34
|
Jakola AS, Unsgård G, Myrmel KS, Kloster R, Torp SH, Lindal S, Solheim O. Low grade gliomas in eloquent locations - implications for surgical strategy, survival and long term quality of life. PLoS One 2012; 7:e51450. [PMID: 23251537 PMCID: PMC3519540 DOI: 10.1371/journal.pone.0051450] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/31/2012] [Indexed: 11/24/2022] Open
Abstract
Background Surgical management of suspected LGG remains controversial. A key factor when deciding a surgical strategy is often the tumors’ perceived relationship to eloquent brain regions Objective To study the association between tumor location, survival and long-term health related quality of life (HRQL) in patients with supratentorial low-grade gliomas (LGG). Methods Adults (≥18 years) operated due to newly diagnosed LGG from 1998 through 2009 included from two Norwegian university hospitals. After review of initial histopathology, 153 adults with supratentorial WHO grade II LGG were included in the study. Tumors’ anatomical location and the relationship to eloquent regions were graded. Survival analysis was adjusted for known prognostic factors and the initial surgical procedure (biopsy or resection). In long-term survivors, HRQL was assessed with disease specific questionnaires (EORTC QLQ-C30 and BN20) as well as a generic questionnaire (EuroQol 5D). Results There was a significant association between eloquence and survival (log-rank, p<0.001). The estimated 5-year survival was 77% in non-eloquent tumors, 71% in intermediate located tumors and 54% in eloquent tumors. In the adjusted analysis the hazard ratio of increasing eloquence was 1.5 (95% CI 1.1–2.0, p = 0.022). There were no differences in HRQL between patients with eloquent and non-eloquent tumors. The most frequent self-reported symptoms were related to fatigue, cognition, and future uncertainty. Conclusion Eloquently located LGGs are associated with impaired survival compared to non-eloquently located LGG, but in long-term survivors HRQL is similar. Although causal inference from observational data should be done with caution, the findings illuminate the delicate balance in surgical decision making in LGGs, and add support to the probable survival benefits of aggressive surgical strategies, perhaps also in eloquent locations.
Collapse
Affiliation(s)
- Asgeir S Jakola
- Department of Neurosurgery, St.Olavs University Hospital, Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
35
|
Blonski M, Taillandier L, Herbet G, Maldonado IL, Beauchesne P, Fabbro M, Campello C, Gozé C, Rigau V, Moritz-Gasser S, Kerr C, Rudà R, Soffietti R, Bauchet L, Duffau H. Combination of neoadjuvant chemotherapy followed by surgical resection as a new strategy for WHO grade II gliomas: a study of cognitive status and quality of life. J Neurooncol 2011; 106:353-66. [PMID: 21785913 DOI: 10.1007/s11060-011-0670-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
Abstract
Diffuse WHO grade II (GIIG) may be unresectable when involving critical structures. To assess the feasibility and functional tolerance (cognition and quality of life) of an original therapeutic strategy combining neoadjuvant chemotherapy followed by surgical resection for initially inoperable GIIG. Ten patients underwent Temozolomide for unresectable GIIG, as initial treatment or at recurrence after previous partial resection, due to invasion of eloquent areas or bi-hemispheric diffusion preventing a total/subtotal removal. Functional outcome after both treatments was assessed, with evaluation of seven cognitive domains. Chemotherapy induced tumor shrinkage (median volume decrease 38.9%) in ipsilateral functional areas in six patients and in the contralateral hemisphere in four. Only four patients had a 1p19q codeletion. The tumor shrinkage made possible the resection (mean extent of resection 93.3%, 9 total or subtotal removals) of initially inoperable tumors. Postoperatively, three patients had no deficits, while verbal episodic memory and executive functions were slightly impaired in seven patients. However, global quality of life was roughly preserved on the EORTC QLQ C30 + BN 20 (median score: 66.7%). Role functioning score was relatively reduced (median score: 66.7%) whereas KPS was preserved (median score: 90, range 80-100). Seven patients became seizure-free while three improved. This combined treatment is feasible, efficient (surgery made possible by neoadjuvant chemotherapy) and well-tolerated (preservation of quality of life, no serious cognitive disturbances). Cognitive deficits seem mostly related to tumor location. Because KPS is not reliable enough, a detailed neuropsychological assessment should be systematically performed in GIIG.
Collapse
Affiliation(s)
- Marie Blonski
- Division of Neuro-Oncology, Department of Neurology, Nancy University Hospital, Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oligodendrogliomas. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/b978-0-7506-7516-1.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Scotland JL, Al-Shahi Salman R, Deary IJ, Whittle IR. Recruitment difficulties in brain tumour patients cause participation bias: findings from a neuropsychological study of adult inpatients with supratentorial intracranial tumours. Acta Neurochir (Wien) 2009; 151:1191-5. [PMID: 19440655 DOI: 10.1007/s00701-009-0371-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Patients who participate in questionnaire surveys, clinical studies and clinical trials can be different from patients who do not participate. The occurrence and direction of this response, participation or ascertainment bias is unpredictable, and can harm the external validity of medical research. METHODS We compared the characteristics of patients with intracranial tumours who participated in a psychological study of inspection time with the characteristics of patients who did not participate for a number of reasons. RESULTS Of 178 newly diagnosed adults with intracranial tumours, 136 (76%) were eligible, of whom 76 (56%) participated and 34 (25%) declined. There were no significant differences in terms of age and sex of the patients who participated and those who declined. When the participation group was combined with those who were ineligible and those who declined, the majority of patients in the combined cohort (n = 152) had a WHO grade III or IV glioma (high-grade glioma) (48.0%), and only 13.2% had a WHO grade I or II glioma (low-grade glioma). However, only 38.2% of those who participated had a WHO grade III or IV glioma, and 23.7% had a WHO grade I or II glioma. Comparisons of the participation vs. ineligible and declined groups revealed there was a significant difference (p = 0.002) between the ratio of high-grade to low-grade gliomas in the total and recruited cohorts. Comparisons of only the participation vs. declined groups approached significance (p = 0.051). WHO grade III and IV glioma patients were under-represented, and WHO grade I or II glioma patients were over-represented in the study group. CONCLUSIONS Noninterventional, non-therapeutic applied neuropsychological studies in neuro-oncology are susceptible to bias since the spectrum of neuropathologies in recruited patients can be significantly different from that of the total cohort. These data could help anticipate recruitment rates for applied neuropsychological studies in clinical neuro-oncology and may help anticipate likely selection biases amongst those who participate.
Collapse
|
38
|
Kato T, Shinoda J, Oka N, Miwa K, Nakayama N, Yano H, Maruyama T, Muragaki Y, Iwama T. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol 2008; 29:1867-71. [PMID: 18687745 DOI: 10.3174/ajnr.a1242] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The relationship of (11)C-methionine (MET) uptake and tumor activity in low-grade gliomas (those meeting the criteria for World Health Organization [WHO] grade II gliomas) remains uncertain. The aim of this study was to compare MET uptake in low-grade gliomas and to analyze whether MET positron-emission tomography (PET) can estimate tumor viability and provide evidence of malignant transformation. MATERIALS AND METHODS We studied glioma metabolic activity in 49 consecutive patients with newly diagnosed grade II gliomas by using MET PET before surgical resection. On MET PET, we measured tumor/normal brain uptake ratio (T/N ratio) in 21 diffuse astrocytomas (DAs), 12 oligodendrogliomas (ODs), and 16 oligoastrocytomas (OAs). We compared MET T/N ratio among these 3 tumors and investigated possible correlation with proliferative activity, as measured by Mib-1 labeling index (LI). RESULTS MET T/N ratios of DA, OD, and OA were 2.11 +/- 0.87, 3.75 +/- 1.43, and 2.76 +/- 1.27, respectively. The MET T/N ratio of OD was significantly higher than that of DA (P < .005). In comparison of MET T/N ratios with the Mib-1 LI, a significant correlation was shown in DA (r = 0.63; P < .005) but not in OD and OA. CONCLUSION MET uptake in DAs may be closely associated with tumor viability, which depends on increased amino acid transport by an activated carrier-mediated system. DAs with lower MET uptake were considered more quiescent lesions, whereas DA with higher MET uptake may act more aggressively.
Collapse
Affiliation(s)
- T Kato
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Duffau H. Intraoperative neurophysiology during surgery for cerebral tumors. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1567-4231(07)08035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
40
|
Contribution of cortical and subcortical electrostimulation in brain glioma surgery: Methodological and functional considerations. Neurophysiol Clin 2007; 37:373-82. [DOI: 10.1016/j.neucli.2007.09.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/09/2007] [Indexed: 11/19/2022] Open
|
41
|
Pallud J, Devaux B, Nataf F, Roux FX, Daumas-Duport C. [Spatial delimitation of low grade oligodendrogliomas]. Neurochirurgie 2005; 51:254-9. [PMID: 16292169 DOI: 10.1016/s0028-3770(05)83486-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Image-guided surgery is the central element of therapeutic management of low grade gliomas and consequently, a precise preoperative definition of their spatial extension is necessary. The question of the present work is: do the imaging abnormalities delineate the real spatial development of low grade oligodendrogliomas? A review of the literature showed that MRI on T2-weighted and FLAIR sequences are used to delineate the spatial developement of these tumours and that spectroscopic magnetic resonance imaging is more sensible to appreciate it. Moreover, mathematical models and histological studies suggest that MRI does not indicate the actual spatial extension of low grade oligodendrogliomas. This study focused on histological analysis of biopsy samples performed outside MRI imaging abnormalities in patients who harboured a low grade oligodendroglioma. It showed that isolated tumour cells were identified beyond imaging abnormalities in all of the 17 patients studied. In 15 of those 17 patients, isolated tumour cells were identified in the most distant biopsy samples taken outside imaging abnormalities. Thus, conventional imaging findings, including MRI on T2-weighted and FLAIR sequences, are not able to provide the real spatial development and boundaries of low grade oligodendrogliomas.
Collapse
Affiliation(s)
- J Pallud
- Service de Neurochirurgie, Centre Hospitalier Sainte-Anne, Paris
| | | | | | | | | |
Collapse
|
42
|
Devaux B, Turak B, Roujeau T, Page P, Cioloca C, Ricci AC, Bret P, Nataf F, Roux FX. [Adult supratentorial oligodendrogliomas. Surgical treatment: indications and techniques]. Neurochirurgie 2005; 51:353-67. [PMID: 16292178 DOI: 10.1016/s0028-3770(05)83495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surgical resection is the first step in the treatment of adult supratentorial oligodendrogliomas (OLG). However, the role of resection on prognosis, the most appropriate time for surgery along the natural history of those tumors, and the best operative strategy remain debated. Survival curves after resection vary greatly among reported series, in particular as a result of a persisting confusion in identification and classification of cerebral OLG. Surgical or stereotactic biopsy is the first surgical procedure which enables confirmation of the diagnosis suggested on imaging, assessment of extension of tumor cell infiltration beyond abnormalities limit described an imaging, and currently available molecular biology studies. Biopsies may be the only surgical procedure in patients having a deep-seated tumor with minimal mass effect, or prior to a surgical resection or a "wait and watch" strategy. Surgical resection is indicated for the other patients. However, it has not been demonstrated that time for resection has an influence on survival, excepted in patients with rapidly growing tumors, with mass effect causing increased intracranial pressure. A wait and watch strategy is therefore warranted in patients with a tumor aspect suggestive of a grade A OLG; surgical resection may be indicated later. There is a current trend for maximal safe resection, preserving functional cerebral areas, since truly complete resection of the tumor including infiltration is exceptional. However, from the contradictory results reported to date, one cannot ascertain whether large or complete resection based on imaging is associated with significantly longer survival. Neuronavigation guidance, intraoperative imaging, and cortical stimulation techniques are helpful neurosurgical techniques enabling maximal safe resection with preservation of functional areas.
Collapse
Affiliation(s)
- B Devaux
- Service de Neurochirurgie, Centre Hospitalier Sainte-Anne, Paris.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 2005; 4:476-86. [PMID: 16033690 DOI: 10.1016/s1474-4422(05)70140-x] [Citation(s) in RCA: 448] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Surgical treatment of low-grade gliomas (LGGs) aims to maximise the amount of tumour tissue resected, while minimising the risk of functional sequelae. In this review I address the issue of how to reconcile these two conflicting goals. First, I review the natural history of LGG-growth, invasion, and anaplastic transformation. Second, I discuss the contribution of new techniques, such as functional mapping, to our understanding of brain reorganisation in response to progressive growth of LGG. Third, I consider the clinical implications of interactions between tumour progression and brain plasticity. In particular, I show how longitudinal studies (preoperative, intraoperative, and postoperative) could allow us to optimise the surgical risk-to-benefit ratios. I will also discuss controversial issues such as defining surgical indications for LGGs, predicting the risk of postoperative deficit, aspects of operative surgical neuro-oncology (eg, preoperative planning and preservation of functional areas and tracts), and postoperative functional recovery.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, INSERM U678, Hôpital Salpêtrière, Paris, France.
| |
Collapse
|