1
|
Nicholson S, Russo AW, Brewer K, Bien H, Tobyne SM, Eloyan A, Klawiter EC. The effect of ibudilast on thalamic volume in progressive multiple sclerosis. Mult Scler 2023; 29:1819-1830. [PMID: 37947294 PMCID: PMC10841081 DOI: 10.1177/13524585231204710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Thalamic volume loss is known to be associated with clinical and cognitive disability in progressive multiple sclerosis (PMS). OBJECTIVE To investigate the treatment effect of ibudilast on thalamic atrophy more than 96 weeks in the phase 2 trial in progressive(MS Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis [SPRINT-MS]). METHODS A total of 231 participants were randomized to either ibudilast (n = 114) or placebo (n = 117). Thalamic volume change was computed using Bayesian Sequence Adaptive Multimodal Segmentation tool (SAMseg) incorporating T1, fluid-attenuated inversion recovery (FLAIR), and fractional anisotropy maps and analyzed with a mixed-effects repeated-measures model. RESULTS There was no significant difference in thalamic volumes between treatment groups. On exploratory analysis, participants with primary progressive multiple sclerosis (PPMS) on placebo had a 0.004% greater rate of thalamic atrophy than PPMS participants on ibudilast (p = 0.058, 95% confidence interval (CI) = -0.008 to <0.001). Greater reductions in thalamic volumes at more than 96 weeks were associated with worsening multiple sclerosis functional composite (MSFC-4) scores (p = 0.002) and worsening performance on the symbol digit modality test (SDMT) (p < 0.001). CONCLUSION In a phase 2 trial evaluating ibudilast in PMS, no treatment effect was demonstrated in preventing thalamic atrophy. Participants with PPMS exhibited a treatment effect that trended toward significance. Longitudinal changes in thalamic volume were related to worsening of physical and cognitive disability, highlighting this outcome's clinical importance.
Collapse
Affiliation(s)
- Showly Nicholson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Bien
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean M Tobyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ani Eloyan
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
AbdelRazek MA, Tummala S, Khalid F, Tauhid S, Jalkh Y, Khalil S, Hurwitz S, Zurawski J, Bakshi R. Exploring the effect of glatiramer acetate on cerebral gray matter atrophy in multiple sclerosis. J Neurol Sci 2023; 444:120501. [PMID: 36481574 DOI: 10.1016/j.jns.2022.120501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral gray matter (GM) atrophy is a proposed measure of neuroprotection in multiple sclerosis (MS). Glatiramer acetate (GA) limits clinical relapses, MRI lesions, and whole brain atrophy in relapsing-remitting MS (RRMS). The effect of GA on GM atrophy remains unclear. We assessed GM atrophy in patients with RRMS starting GA therapy in comparison to a cohort of patients with clinically benign RRMS (BMS). DESIGN/METHODS We studied 14 patients at GA start [age (mean ± SD) 44.2 ± 7.0 years, disease duration (DD) 7.2 ± 6.4 years, Expanded Disability Status Scale score (EDSS) (median,IQR) 1.0,2.0] and 6 patients with BMS [age 43.0 ± 6.1 years, DD 18.1 ± 8.4 years, EDSS 0.5,1.0]. Brain MRI was obtained at baseline and one year later (both groups) and two years later in all patients in the GA group except one who was lost to follow-up. Semi-automated algorithms assessed cerebral T2 hyperintense lesion volume (T2LV), white matter fraction (WMF), GM fraction (GMF), and brain parenchymal fraction (BPF). The exact Wilcoxon-Mann-Whitney test compared the groups. The Wilcoxon signed rank test assessed longitudinal changes within groups. RESULTS During the first year, MRI changes did not differ significantly between groups (p > 0.15). Within the BMS group, WMF and BPF decreased during the first year (p = 0.03). Within the GA group, there was no significant change in MRI measures during each annual period (p > 0.05). Over two years, the GA group had a significant increase in T2LV and decrease in WMF (p < 0.05), while GMF and BPF remained stable (p > 0.05). MRI changes in brain volumes (GMF or WMF) in the first year in the GA group were not significantly different from those in the BMS group (p > 0.5). CONCLUSIONS In this pilot study with a small sample size, patients with RRMS started on GA did not show significant GM or whole brain atrophy over 2 years, resembling MS patients with a clinically benign disease course.
Collapse
Affiliation(s)
| | - Subhash Tummala
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fariha Khalid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Youmna Jalkh
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samar Khalil
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley Hurwitz
- Departments of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Zurawski
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Departments of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Moccia M, Prados F, Filippi M, Rocca MA, Valsasina P, Brownlee WJ, Zecca C, Gallo A, Rovira A, Gass A, Palace J, Lukas C, Vrenken H, Ourselin S, Gandini Wheeler‐Kingshott CAM, Ciccarelli O, Barkhof F. Longitudinal spinal cord atrophy in multiple sclerosis using the generalized boundary shift integral. Ann Neurol 2019; 86:704-713. [DOI: 10.1002/ana.25571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Marcello Moccia
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Multiple Sclerosis Clinical Care and Research Center, Department of NeurosciencesFederico II University Naples Italy
| | - Ferran Prados
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and BioengineeringUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
- Open University of Catalonia Barcelona Spain
| | - Massimo Filippi
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
- Department of NeurologySan Raffaele Scientific Institute Milan Italy
| | - Maria A. Rocca
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
- Department of NeurologySan Raffaele Scientific Institute Milan Italy
| | - Paola Valsasina
- Division of Neuroscience, San Raffaele Scientific Institute, Vita‐Salute San Raffaele UniversityNeuroimaging Research Unit, Institute of Experimental Neurology Milan Italy
| | - Wallace J. Brownlee
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
| | - Chiara Zecca
- Neurocenter of Southern SwitzerlandLugano Regional Hospital Lugano Switzerland
| | - Antonio Gallo
- 3T‐MRI Research Center, Department of Advanced Medical and Surgical SciencesUniversity of Campania Luigi Vanvitelli Naples Italy
| | - Alex Rovira
- Section of Neuroradiology, Department of RadiologyVall d'Hebron University Hospital, Autonomous University of Barcelona Barcelona Spain
| | - Achim Gass
- Department of NeurologyUniversitätsmedizin Mannheim, University of Heidelberg Mannheim Germany
| | - Jacqueline Palace
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital Oxford United Kingdom
| | | | - Hugo Vrenken
- Department of Radiology and Nuclear MedicineVU University Medical Center Amsterdam the Netherlands
| | - Sebastien Ourselin
- Department of Imaging and Biomedical EngineeringKing's College London London United Kingdom
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Department of Brain and Behavioral SciencesUniversity of Pavia Pavia Italy
- Brain MRI 3T Research Center, Mondino FoundationScientific Institute for Research and Health Care Pavia Italy
| | - Olga Ciccarelli
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
| | - Frederik Barkhof
- Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College London London United Kingdom
- Centre for Medical Image Computing, Department of Medical Physics and BioengineeringUniversity College London London United Kingdom
- National Institute for Health ResearchUniversity College London Hospitals Biomedical Research Centre London United Kingdom
- Department of Radiology and Nuclear MedicineVU University Medical Center Amsterdam the Netherlands
| | | |
Collapse
|
4
|
Assessing the cerebral gray matter volume in response to fingolimod therapy in multiple sclerosis: A more analytic view. J Neurol Sci 2017; 383:230-231. [PMID: 29102163 DOI: 10.1016/j.jns.2017.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022]
|
5
|
Yousuf F, Dupuy SL, Tauhid S, Chu R, Kim G, Tummala S, Khalid F, Weiner HL, Chitnis T, Healy BC, Bakshi R. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J Neurol Sci 2017; 383:221-229. [DOI: 10.1016/j.jns.2017.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
|
6
|
Moccia M, de Stefano N, Barkhof F. Imaging outcome measures for progressive multiple sclerosis trials. Mult Scler 2017; 23:1614-1626. [PMID: 29041865 PMCID: PMC5650056 DOI: 10.1177/1352458517729456] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
Imaging markers that are reliable, reproducible and sensitive to neurodegenerative changes in progressive multiple sclerosis (MS) can enhance the development of new medications with a neuroprotective mode-of-action. Accordingly, in recent years, a considerable number of imaging biomarkers have been included in phase 2 and 3 clinical trials in primary and secondary progressive MS. Brain lesion count and volume are markers of inflammation and demyelination and are important outcomes even in progressive MS trials. Brain and, more recently, spinal cord atrophy are gaining relevance, considering their strong association with disability accrual; ongoing improvements in analysis methods will enhance their applicability in clinical trials, especially for cord atrophy. Advanced magnetic resonance imaging (MRI) techniques (e.g. magnetization transfer ratio (MTR), diffusion tensor imaging (DTI), spectroscopy) have been included in few trials so far and hold promise for the future, as they can reflect specific pathological changes targeted by neuroprotective treatments. Positron emission tomography (PET) and optical coherence tomography have yet to be included. Applications, limitations and future perspectives of these techniques in clinical trials in progressive MS are discussed, with emphasis on measurement sensitivity, reliability and sample size calculation.
Collapse
Affiliation(s)
- Marcello Moccia
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Frederik Barkhof
- NMR Research Unit, Queen Square MS Centre, UCL Institute of Neurology, University College London, London, UK; Translational Imaging Group, UCL Institute of Healthcare Engineering, University College London, London, UK; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Zivadinov R, Jakimovski D, Gandhi S, Ahmed R, Dwyer MG, Horakova D, Weinstock-Guttman B, Benedict RRH, Vaneckova M, Barnett M, Bergsland N. Clinical relevance of brain atrophy assessment in multiple sclerosis. Implications for its use in a clinical routine. Expert Rev Neurother 2016; 16:777-93. [PMID: 27105209 DOI: 10.1080/14737175.2016.1181543] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Brain atrophy measurement in multiple sclerosis (MS) has become an important outcome for determining patients at risk for developing physical and cognitive disability. AREAS COVERED In this article, we discuss the methodological issues related to using this MRI metric routinely, in a clinical setting. Understanding trajectories of annualized whole brain, gray and white matter, thalamic volume loss, and enlargement of ventricular space in specific MS phenotypes is becoming increasingly important. Evidence is mounting that disease-modifying treatments exert a positive effect on slowing brain atrophy progression in MS. Expert Commentary: While there is a need to translate measurement of brain atrophy to clinical routine at the individual patient level, there are still a number of challenges to be met before this can actually happen, including how to account for biological confounding factors and pseudoatrophy, standardize acquisition and analyses parameters, which can influence the accuracy of the assessments.
Collapse
Affiliation(s)
- Robert Zivadinov
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,b MR Imaging Clinical Translational Research Center, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Dejan Jakimovski
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Sirin Gandhi
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Rahil Ahmed
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Michael G Dwyer
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Dana Horakova
- c Department of Neurology and Center of Clinical Neuroscience , Charles University in Prague, First Faculty of Medicine and General University Hospital , Prague , Czech Republic
| | - Bianca Weinstock-Guttman
- d Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Ralph R H Benedict
- d Jacobs Multiple Sclerosis Center, Department of Neurology, School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA
| | - Manuela Vaneckova
- e Department of Radiology, First Faculty of Medicine and General University Hospital , Charles University , Prague , Czech Republic
| | - Michael Barnett
- f Sydney Neuroimaging Analysis Centre; Brain & Mind Centre , University of Sydney , Sydney , Australia
| | - Niels Bergsland
- a Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences , University at Buffalo, State University of New York , Buffalo , NY , USA.,g IRCCS 'S.Maria Nascente' , Don Gnocchi Foundation , Milan , Italy
| |
Collapse
|
8
|
Abstract
The objective of this study was to test a new version of the Magnetic Resonance Disease Severity Scale (MRDSS2), incorporating cerebral gray matter (GM) and spinal cord involvement from 3 T MRI, in modeling the relationship between MRI and physical disability or cognitive status in multiple sclerosis (MS). Fifty-five MS patients and 30 normal controls underwent high-resolution 3 T MRI. The patients had an Expanded Disability Status Scale score of 1.6±1.7 (mean±SD). The cerebral normalized GM fraction (GMF), the T2 lesion volume (T2LV), and the ratio of T1 hypointense LV to T2LV (T1/T2) were derived from brain images. Upper cervical spinal cord area (UCCA) was obtained from spinal cord images. A within-subject d-score (difference of MS from normal control) for each MRI component was calculated, equally weighted, and summed to form MRDSS2. With regard to the relationship between physical disability and MRDSS2 or its individual components, MRI–Expanded Disability Status Scale correlations were significant for MRDSS2 (r=0.33, P=0.013) and UCCA (r=−0.33, P=0.015), but not for GMF (P=0.198), T2LV (P=0.707), and T1/T2 (P=0.240). The inclusion of UCCA appeared to drive this MRI–disability relationship in MRDSS2. With regard to cognition, MRDSS2 showed a larger effect size (P=0.035) than its individual components [GMF (P=0.081), T2LV (P=0. 179), T1/T2 (P=0.043), and UCCA (P=0.818)] in comparing cognitively impaired with cognitively preserved patients (defined by the Minimal Assessment of Cognitive Function in MS). Both cerebral lesions (T1/T2) and atrophy (GMF) appeared to drive this relationship. We describe a new version of the MRDSS, which has been expanded to include cerebral GM and spinal cord involvement. MRDSS2 has concurrent validity with clinical status.
Collapse
|
9
|
Reich DS, White R, Cortese IC, Vuolo L, Shea CD, Collins TL, Petkau J. Sample-size calculations for short-term proof-of-concept studies of tissue protection and repair in multiple sclerosis lesions via conventional clinical imaging. Mult Scler 2015; 21:1693-704. [PMID: 25662351 DOI: 10.1177/1352458515569098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/16/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND New multiple sclerosis (MS) lesion activity on magnetic resonance imaging (MRI) can test immunomodulatory therapies in proof-of-concept trials. Comparably powerful endpoints to assess tissue protection or repair are lacking. OBJECTIVE The objective of this paper is to report sample-size calculations for assessment of new lesion recovery. METHODS In two sets of six active MS cases, new lesions were observed by monthly MRI for approximately 12 months. Averages and quartiles of normalized (proton density/T1/T2 weighted) and quantitative (T1/T2 and mean diffusivity maps for dataset 1, T2 and magnetization transfer ratio maps for dataset 2) measures were used to compare the lesion area before lesion appearance to afterward. A linear mixed-effects model incorporating lesion- and participant-specific random effects estimated average levels and variance components for sample-size calculations. RESULTS In both datasets, greatest statistical sensitivity was observed for the 25th percentile of normalized proton density-weighted signal. At 3T, using new lesions ⩾15 mm(3), as few as nine participants/arm may be required for a six-month placebo-controlled add-on trial postulating a therapeutic effect size of 20% and statistical power of 90%. CONCLUSION Lesion recovery is a powerful outcome measure for proof-of-concept clinical trials of tissue protection and repair in MS. The trial design requires active cases and is therefore best implemented near disease onset.
Collapse
Affiliation(s)
- Daniel S Reich
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Richard White
- Department of Statistics, University of British Columbia, Canada
| | - Irene Cm Cortese
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Luisa Vuolo
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | - Colin D Shea
- Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA
| | | | - John Petkau
- Department of Statistics, University of British Columbia, Canada
| |
Collapse
|
10
|
Dwyer MG, Bergsland N, Zivadinov R. Improved longitudinal gray and white matter atrophy assessment via application of a 4-dimensional hidden Markov random field model. Neuroimage 2014; 90:207-17. [DOI: 10.1016/j.neuroimage.2013.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 12/01/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022] Open
|
11
|
Kurth F, Luders E, Sicotte NL, Gaser C, Giesser BS, Swerdloff RS, Montag MJ, Voskuhl RR, Mackenzie-Graham A. Neuroprotective effects of testosterone treatment in men with multiple sclerosis. NEUROIMAGE-CLINICAL 2014; 4:454-60. [PMID: 24634831 PMCID: PMC3952353 DOI: 10.1016/j.nicl.2014.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system. While current medication reduces relapses and inflammatory activity, it has only a modest effect on long-term disability and gray matter atrophy. Here, we have characterized the potential neuroprotective effects of testosterone on cerebral gray matter in a pilot clinical trial. Ten men with relapsing-remitting MS were included in this open-label phase II trial. Subjects were observed without treatment for 6 months, followed by testosterone treatment for another 12 months. Focal gray matter loss as a marker for neurodegeneration was assessed using voxel-based morphometry. During the non-treatment phase, significant voxel-wise gray matter decreases were widespread (p≤ 0.05 corrected). However, during testosterone treatment, gray matter loss was no longer evident. In fact, a significant gray matter increase in the right frontal cortex was observed (p≤ 0.05 corrected). These observations support the potential of testosterone treatment to stall (and perhaps even reverse) neurodegeneration associated with MS. Furthermore, they warrant the investigation of testosterone's neuroprotective effects in larger, placebo controlled MS trials as well as in other neurodegenerative diseases. This is the first report of gray matter increase as the result of treatment in MS.
Collapse
Affiliation(s)
- Florian Kurth
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ; Brain Mapping Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Eileen Luders
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ; Brain Mapping Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nancy L Sicotte
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Gaser
- Department of Psychiatry, Jena University Hospital, Jena, Germany ; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Barbara S Giesser
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ronald S Swerdloff
- Department of Medicine, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Michael J Montag
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan Mackenzie-Graham
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ; Brain Mapping Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
12
|
Nakamura K, Guizard N, Fonov VS, Narayanan S, Collins DL, Arnold DL. Jacobian integration method increases the statistical power to measure gray matter atrophy in multiple sclerosis. Neuroimage Clin 2013; 4:10-7. [PMID: 24266007 PMCID: PMC3830061 DOI: 10.1016/j.nicl.2013.10.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022]
Abstract
Gray matter atrophy provides important insights into neurodegeneration in multiple sclerosis (MS) and can be used as a marker of neuroprotection in clinical trials. Jacobian integration is a method for measuring volume change that uses integration of the local Jacobian determinants of the nonlinear deformation field registering two images, and is a promising tool for measuring gray matter atrophy. Our main objective was to compare the statistical power of the Jacobian integration method to commonly used methods in terms of the sample size required to detect a treatment effect on gray matter atrophy. We used multi-center longitudinal data from relapsing-remitting MS patients and evaluated combinations of cross-sectional and longitudinal pre-processing with SIENAX/FSL, SPM, and FreeSurfer, as well as the Jacobian integration method. The Jacobian integration method outperformed these other commonly used methods, reducing the required sample size by a factor of 4-5. The results demonstrate the advantage of using the Jacobian integration method to assess neuroprotection in MS clinical trials.
Collapse
Affiliation(s)
- Kunio Nakamura
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Nicolas Guizard
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Vladimir S. Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Sridar Narayanan
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| | - D. Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Douglas L. Arnold
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
- NeuroRx Research, 3575 Park Avenue, Suite #5322, Montreal, Quebec H2X 4B3, Canada
| |
Collapse
|
13
|
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is pathologically characterized by inflammatory demyelination and neurodegeneration. Axonal damage, along with neuronal loss, occurs from disease onset and may lead to progressive and permanent disability. In contrast with the inflammatory pathways, the molecular mechanisms leading to MS neurodegeneration remain largely elusive. With improved understanding of these mechanisms, new potential therapeutic targets for neuroprotection have emerged. We review the current understanding of neurodegenerative processes at play in MS and discuss potential outcome measures and targets for neuroprotection trials.
Collapse
Affiliation(s)
- Amir-Hadi Maghzi
- Multiple Sclerosis Center, Department of Neurology, University of California San Francisco (UCSF), 675 Nelson Rising Lane, 2nd floor, Room 221F, Box 3206, 94158, San Francisco, CA, USA,
| | | | | |
Collapse
|
14
|
Inglese M, Oesingmann N, Casaccia P, Fleysher L. Progressive multiple sclerosis and gray matter pathology: an MRI perspective. ACTA ACUST UNITED AC 2011; 78:258-67. [PMID: 21425269 DOI: 10.1002/msj.20247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evidence suggesting a role of extensive cortical demyelization and atrophy in progressive multiple sclerosis is rapidly increasing. Although conventional magnetic resonance imaging has had a huge impact on multiple sclerosis by enabling an earlier diagnosis, and by providing surrogate markers for monitoring disease response to anti-inflammatory/immunomodulatory treatments, it is limited by the low pathological specificity and the low sensitivity to both diffuse damage in normal-appearing white matter and focal and diffuse damage in gray matter. Advanced magnetic resonance imaging techniques can partially overcome these limitations by providing markers more specific to the underlying pathologic substrates and more sensitive to the structural and functional "occult" brain tissue damage in patients with multiple sclerosis. This review describes brain and spinal cord imaging studies of multiple sclerosis with particular emphasis on gray matter imaging in both secondary progressive and primary progressive multiple sclerosis, discusses the clinical implications of gray matter damage, and outlines current magnetic resonance imaging developments at high and ultrahigh magnetic field strength.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
15
|
Samia K, Rohit B. Cerebral pseudoatrophy or real atrophy after therapy in multiple sclerosis. Ann Neurol 2010; 68:778-9. [DOI: 10.1002/ana.22254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Talman LS, Bisker ER, Sackel DJ, Long DA, Galetta KM, Ratchford JN, Lile DJ, Farrell SK, Loguidice MJ, Remington G, Conger A, Frohman TC, Jacobs DA, Markowitz CE, Cutter GR, Ying GS, Dai Y, Maguire MG, Galetta SL, Frohman EM, Calabresi PA, Balcer LJ. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67:749-60. [PMID: 20517936 DOI: 10.1002/ana.22005] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Cross-sectional studies of optical coherence tomography (OCT) show that retinal nerve fiber layer (RNFL) thickness is reduced in multiple sclerosis (MS) and correlates with visual function. We determined how longitudinal changes in RNFL thickness relate to visual loss. We also examined patterns of RNFL thinning over time in MS eyes with and without a prior history of acute optic neuritis (ON). METHODS Patients underwent OCT measurement of RNFL thickness at baseline and at 6-month intervals during a mean follow-up of 18 months at 3 centers. Low-contrast letter acuity (2.5%, 1.25% contrast) and visual acuity (VA) were assessed. RESULTS Among 299 patients (593 eyes) with >or=6 months follow-up, eyes with visual loss showed greater RNFL thinning compared to eyes with stable vision (low-contrast acuity, 2.5%: p < 0.001; VA: p = 0.005). RNFL thinning increased over time, with average losses of 2.9microm at 2 to 3 years and 6.1microm at 3 to 4.5 years (p < 0.001 vs 0.5-1-year follow-up interval). These patterns were observed for eyes with or without prior history of ON. Proportions of eyes with RNFL loss greater than test-retest variability (>or=6.6microm) increased from 11% at 0 to 1 year to 44% at 3 to 4.5 years (p < 0.001). INTERPRETATION Progressive RNFL thinning occurs as a function of time in some patients with MS, even in the absence of ON, and is associated with clinically significant visual loss. These findings are consistent with subclinical axonal loss in the anterior visual pathway in MS, and support the use of OCT and low-contrast acuity as methods to evaluate the effectiveness of putative neuroprotection protocols.
Collapse
Affiliation(s)
- Lauren S Talman
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sampat MP, Healy BC, Meier DS, Dell'Oglio E, Liguori M, Guttmann CRG. Disease modeling in multiple sclerosis: assessment and quantification of sources of variability in brain parenchymal fraction measurements. Neuroimage 2010; 52:1367-73. [PMID: 20362675 DOI: 10.1016/j.neuroimage.2010.03.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/20/2010] [Accepted: 03/26/2010] [Indexed: 12/01/2022] Open
Abstract
The measurement of brain atrophy from magnetic resonance imaging (MRI) has become an established method of estimating disease severity and progression in multiple sclerosis (MS). Most commonly reported in the form of brain parenchymal fraction (BPF), it is more sensitive to the degenerative component of the disease and shows progression more reliably than lesion burden. Typically, the reliability of BPF and other morphometric measurements is assessed by evaluating scan-rescan experiments. While these experiments provide good estimates of real-life error related to imperfect patient repositioning in the MRI scanner, measurement variance due to physiological and reversible pathological fluctuations in brain volume are not taken into account. In this work, we propose a new model for estimating variability in serial morphometry, particularly the BPF measurement. Specifically, we attempt to detect and explicitly model the remaining sources of error to more accurately describe the overall variability in BPF measurements. Our results show that sources of variability beyond subject repositioning error are important and cannot be ignored. We demonstrate that scan-rescan experiments only provide a lower bound on the true error in repeated measurements of patients' BPF. We have estimated the variance due to patient repositioning during scan-rescan (sigma(sr)(2) = 3.0e-06), variance assigned to physiological fluctuations (sigma(p)(2) = 5.74e-06) and the variance associated with lesion activity (sigma(les)(2) = 1.09e-05). These variance components can be used to determine the relative impact of their sources on sample size estimates for studies investigating change over time in MS patients. Our results demonstrate that sample size calculations based exclusively on scan-rescan variability (sigma(sr)) are likely to underestimate the number of patients required. If the physiological variability (sigma(p)) is incorporated in sample size calculations, the required sample size would increase by a factor of 5.69 based on standard t-test sample size calculation.
Collapse
Affiliation(s)
- Mehul P Sampat
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|