1
|
Loss of glutamate signaling from the thalamus to dorsal striatum impairs motor function and slows the execution of learned behaviors. NPJ PARKINSONS DISEASE 2018; 4:23. [PMID: 30083593 PMCID: PMC6072777 DOI: 10.1038/s41531-018-0060-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 01/15/2023]
Abstract
Parkinson’s disease (PD) is primarily associated with the degeneration of midbrain dopamine neurons, but it is now appreciated that pathological processes like Lewy-body inclusions and cell loss affect several other brain regions, including the central lateral (CL) and centromedian/parafascicular (CM/PF) thalamic regions. These thalamic glutamatergic neurons provide a non-cortical excitatory input to the dorsal striatum, a major projection field of dopamine neurons. To determine how thalamostriatal signaling may contribute to cognitive and motor abnormalities found in PD, we used a viral vector approach to generate mice with loss of thalamostriatal glutamate signaling specifically restricted to the dorsal striatum (CAV2Cre-Slc17a6lox/lox mice). We measured motor function and behaviors corresponding to cognitive domains (visuospatial function, attention, executive function, and working memory) affected in PD. CAV2Cre-Slc17a6lox/lox mice were impaired in motor coordination tasks such as the rotarod and beam-walk tests compared with controls (CAV2Cre-Slc17a6+/+ mice). They did not demonstrate much cognitive impairment in the Morris water maze or a water U-maze, but had slower processing reaction times in those tests and in a two-way active avoidance task. These mice could model an aspect of bradyphrenia, the slowness of thought that is often seen in patients with PD and other neurological disorders. Mice in which glutamate signaling from the thalamus to dorsal striatum has been genetically inactivated mimic the slowness of thought that is often observed in patients with Parkinson’s disease (PD). The midbrain and striatum are the brain regions that are most affected in PD, however, it is increasingly recognized that cell loss in other areas of the brain also contribute to disease symptoms. Martin Darvas at the University of Washington, Seattle, USA, and colleagues found that disrupting the excitatory input from thalamic projection neurons into the dorsal striatum affected motor coordination and balance in mice. Although these mice did not have significant impairments in spatial learning and memory, they were slower at reacting to cues and executing learned behaviors suggesting that they could be used to test new approaches for treating this specific cognitive symptom of PD.
Collapse
|
2
|
Comparative evaluation of the white matter fiber integrity in patients with prelingual and postlingual deafness. Neuroreport 2018; 28:1103-1107. [PMID: 28885484 DOI: 10.1097/wnr.0000000000000894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to perform a comparative investigation of white matter integrity in patients with prelingual and postlingual deafness; we carried out a tract-based statistical analysis of diffusion tensor anisotropy in eight and ten adults with prelingual and postlingual deafness, respectively. Patients with deafness showed significant decreases in diffusion anisotropy at the right internal capsule, the right thalamus, and the splenium of the corpus callosum as well as within the bilateral superior temporal gyrus (including Heschl gyrus) and right temporal white matter. Furthermore, relative to patients with postlingual deafness, those with prelingual deafness showed lower anisotropy in the right superior temporal gyrus, bilateral temporal white matter, and the genu and anterior body of the corpus callosum. We believe that, in patients with deafness, reception of early auditory stimuli before language acquisition might be more critical to white matter maturation and brain reorganization than the nature of auditory stimuli itself or the duration of disuse. These findings provide the theoretical background for early auditory rehabilitation.
Collapse
|
3
|
Pergola G, Bellebaum C, Gehlhaar B, Koch B, Schwarz M, Daum I, Suchan B. The Involvement of the Thalamus in Semantic Retrieval: A Clinical Group Study. J Cogn Neurosci 2013; 25:872-86. [DOI: 10.1162/jocn_a_00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
There is increasing attention about the role of the thalamus in high cognitive functions, including memory. Although the bulk of the evidence refers to episodic memory, it was recently proposed that the mediodorsal (MD) and the centromedian–parafascicular (CM–Pf) nuclei of the thalamus may process general operations supporting memory performance, not only episodic memory. This perspective agrees with other recent fMRI findings on semantic retrieval in healthy participants. It can therefore be hypothesized that lesions to the MD and the CM–Pf impair semantic retrieval. In this study, 10 patients with focal ischemic lesions in the medial thalamus and 10 healthy controls matched for age, education, and verbal IQ performed a verbal semantic retrieval task. Patients were assigned to a target clinical group and a control clinical group based on lesion localization. Patients did not suffer from aphasia and performed in the range of controls in a categorization and a semantic association task. However, target patients performed poorer than healthy controls on semantic retrieval. The deficit was not because of higher distractibility but of an increased rate of false recall and, in some patients, of a considerably increased rate of misses. The latter deficit yielded a striking difference between the target and the control clinical groups and is consistent with anomia. Follow-up high-resolution structural scanning session in a subsample of patients revealed that lesions in the CM–Pf and MD were primarily associated with semantic retrieval deficits. We conclude that integrity of the MD and the CM–Pf is required for semantic retrieval, possibly because of their role in the activation of phonological representations.
Collapse
Affiliation(s)
- Giulio Pergola
- 1International School for Advanced Studies, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Miao W, Li J, Tang M, Xian J, Li W, Liu Z, Liu S, Sabel BA, Wang Z, He H. Altered white matter integrity in adolescents with prelingual deafness: a high-resolution tract-based spatial statistics imaging study. AJNR Am J Neuroradiol 2012; 34:1264-70. [PMID: 23275596 DOI: 10.3174/ajnr.a3370] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Prelingual deafness is a hearing loss that occurs before language is acquired and may result in brain structural alterations. We studied microstructural WM alterations in prelingually deaf adolescents by using DTI. We hypothesized that any morphologic alterations are mainly located in the auditory association areas. Furthermore, considering that the developing brain is both more vulnerable to deprivation and more plastic than the adult brain, we speculated that the affected areas should be larger than those previously reported in adult deafness. MATERIALS AND METHODS Diffusion tensor images were obtained from 16 prelingually deaf adolescents (age range, 10-18 years) and 16 healthy control adolescents matched for age and sex. Both groups were compared in fractional anisotropy and radial diffusivity by tract-based spatial statistics. In addition, we examined the correlation between the structural data (FA, RD) differences and the duration of sign language use and hearing aid experience. RESULTS Prelingually deaf adolescents had significantly lower FA and increased RD in the bilateral superior temporal gyri, Heschl gyrus, planum polare, and the splenium of the corpus callosum. Only RD values in the right superior temporal gyrus correlated significantly and negatively (r = -0.518; P = .040) with duration of sign language use. These alterations were larger than those previously reported in adult deafness. CONCLUSIONS As expected, we found severe morphologic changes of decreased FA and increased RD in multiple auditory association areas and in the corpus callosum. These changes are signs of development impairments in prelingually deaf adolescents, possibly reflecting axonal loss or lack of myelination.
Collapse
Affiliation(s)
- W Miao
- State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peterburs J, Pergola G, Koch B, Schwarz M, Hoffmann KP, Daum I, Bellebaum C. Altered error processing following vascular thalamic damage: evidence from an antisaccade task. PLoS One 2011; 6:e21517. [PMID: 21731771 PMCID: PMC3121774 DOI: 10.1371/journal.pone.0021517] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/02/2011] [Indexed: 11/19/2022] Open
Abstract
Event-related potentials (ERP) research has identified a negative deflection within about 100 to 150 ms after an erroneous response – the error-related negativity (ERN) - as a correlate of awareness-independent error processing. The short latency suggests an internal error monitoring system acting rapidly based on central information such as an efference copy signal. Studies on monkeys and humans have identified the thalamus as an important relay station for efference copy signals of ongoing saccades. The present study investigated error processing on an antisaccade task with ERPs in six patients with focal vascular damage to the thalamus and 28 control subjects. ERN amplitudes were significantly reduced in the patients, with the strongest ERN attenuation being observed in two patients with right mediodorsal and ventrolateral and bilateral ventrolateral damage, respectively. Although the number of errors was significantly higher in the thalamic lesion patients, the degree of ERN attenuation did not correlate with the error rate in the patients. The present data underline the role of the thalamus for the online monitoring of saccadic eye movements, albeit not providing unequivocal evidence in favour of an exclusive role of a particular thalamic site being involved in performance monitoring. By relaying saccade-related efference copy signals, the thalamus appears to enable fast error processing. Furthermore early error processing based on internal information may contribute to error awareness which was reduced in the patients.
Collapse
Affiliation(s)
- Jutta Peterburs
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Biber U, Ilg UJ. Visual stability and the motion aftereffect: a psychophysical study revealing spatial updating. PLoS One 2011; 6:e16265. [PMID: 21298104 PMCID: PMC3027650 DOI: 10.1371/journal.pone.0016265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/08/2010] [Indexed: 11/21/2022] Open
Abstract
Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception.The motion aftereffect (MAE) occurs after viewing of a moving stimulus as an apparent movement to the opposite direction. We designed a saccade paradigm suitable for revealing pre-saccadic remapping of the MAE. Indeed, a transfer of motion adaptation from pre-saccadic to post-saccadic position could be observed when subjects prepared saccades. In the remapping condition, the strength of the MAE was comparable to the effect measured in a control condition (33±7% vs. 27±4%). Contrary, after a saccade or without saccade planning, the MAE was weak or absent when adaptation and test stimulus were located at different retinal locations, i.e. the effect was clearly retinotopic. Regarding visual cognition, our study reveals for the first time predictive remapping of the MAE but no spatiotopic transfer across saccades. Since the cortical sites involved in motion adaptation in primates are most likely the primary visual cortex and the middle temporal area (MT/V5) corresponding to human MT, our results suggest that pre-saccadic remapping extends to these areas, which have been associated with strict retinotopy and therefore with classical RF organization. The pre-saccadic transfer of visual features demonstrated here may be a crucial determinant for a stable percept despite saccades.
Collapse
Affiliation(s)
- Ulrich Biber
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
7
|
Klier EM, Angelaki DE. Spatial updating and the maintenance of visual constancy. Neuroscience 2008; 156:801-18. [PMID: 18786618 DOI: 10.1016/j.neuroscience.2008.07.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/16/2022]
Abstract
Spatial updating is the means by which we keep track of the locations of objects in space even as we move. Four decades of research have shown that humans and non-human primates can take the amplitude and direction of intervening movements into account, including saccades (both head-fixed and head-free), pursuit, whole-body rotations and translations. At the neuronal level, spatial updating is thought to be maintained by receptive field locations that shift with changes in gaze, and evidence for such shifts has been shown in several cortical areas. These regions receive information about the intervening movement from several sources including motor efference copies when a voluntary movement is made and vestibular/somatosensory signals when the body is in motion. Many of these updating signals arise from brainstem regions that monitor our ongoing movements and subsequently transmit this information to the cortex via pathways that likely include the thalamus. Several issues of debate include (1) the relative contribution of extra-retinal sensory and efference copy signals to spatial updating, (2) the source of an updating signal for real life, three-dimensional motion that cannot arise from brain areas encoding only two-dimensional commands, and (3) the reference frames used by the brain to integrate updating signals from various sources. This review highlights the relevant spatial updating studies and provides a summary of the field today. We find that spatial constancy is maintained by a highly evolved neural mechanism that keeps track of our movements, transmits this information to relevant brain regions, and then uses this information to change the way in which single neurons respond. In this way, we are able to keep track of relevant objects in the outside world and interact with them in meaningful ways.
Collapse
Affiliation(s)
- E M Klier
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
8
|
Bellebaum C, Hoffmann KP, Koch B, Schwarz M, Daum I. Altered processing of corollary discharge in thalamic lesion patients. Eur J Neurosci 2006; 24:2375-88. [PMID: 17074057 DOI: 10.1111/j.1460-9568.2006.05114.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accumulating evidence suggests that thalamic nuclei relay corollary discharge information of saccadic eye movements, enabling the visual system to update the representation of visual space. The present study aimed to explore the effect of thalamic lesions in humans on updating-related cortical processing. Event-related potentials were recorded while four patients with impairments in using corollary discharge information and 12 healthy control subjects performed a saccadic double-step task. In the experimental condition, which required the use of corollary discharge information, control subjects showed a pronounced positivity over the parietal cortex starting about 150 ms after first saccade onset, reflecting the updating process. In the patients, parietal processing related to updating was altered. Three patients showed evidence of reduced updating event-related potential effects, consistent with a unilateral deficit in using corollary discharge information. In two patients, the event-related potential topography differed significantly from the topography pattern observed in controls. Thalamic damage affects updating-related processing, presumably due to insufficient transfer of saccade-related information to parietal areas. This study thus provides further evidence for thalamic involvement in relaying corollary discharge information related to saccadic eye movements. Our data suggest that integration of corollary discharge and motor information occurs directly before the second saccade in a double-step task.
Collapse
Affiliation(s)
- Christian Bellebaum
- Institute of Cognitive Neuroscience, Department of Neuropsychology, Faculty of Psychology, Ruhr-University of Bochum, D-44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
9
|
Bellebaum C, Daum I, Koch B, Schwarz M, Hoffmann KP. The role of the human thalamus in processing corollary discharge. Brain 2005; 128:1139-54. [PMID: 15758033 DOI: 10.1093/brain/awh474] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Corollary discharge signals play an important role in monitoring self-generated movements to guarantee spatial constancy. Recent work in macaques suggests that the thalamus conveys corollary discharge information of upcoming saccades passing from the superior colliculus to the frontal eye field. The present study aimed to investigate the involvement of the thalamus in humans by assessing the effect of thalamic lesions on the processing of corollary discharge information. Thirteen patients with selective thalamic lesions and 13 healthy age-matched control subjects performed a saccadic double-step task in which retino-spatial dissonance was induced, i.e. the retinal vector of the second target and the movement vector of the second saccade were different. Thus, the subjects could not rely on retinal information alone, but had to use corollary discharge information to correctly perform the second saccade. The amplitudes of first and second saccades were significantly smaller in patients than in controls. Five thalamic lesion patients showed unilateral deficits in using corollary discharge information, as revealed by asymmetries compared with the other patients and controls. Three patients with lateral thalamic lesions including the ventrolateral nucleus (VL) were impaired contralaterally to the side of damage and one patient with a lesion in the mediodorsal thalamus (MD) was impaired ipsilaterally to the lesion. The largest asymmetry was found in a patient with a bilateral thalamic lesion. The results provide evidence for a thalamic involvement in the processing of corollary discharge information in humans, with a potential role of both the VL and MD nuclei.
Collapse
Affiliation(s)
- C Bellebaum
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
10
|
Sommer MA, Wurtz RH. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J Neurophysiol 2003; 91:1403-23. [PMID: 14573557 DOI: 10.1152/jn.00740.2003] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One way we keep track of our movements is by monitoring corollary discharges or internal copies of movement commands. This study tested a hypothesis that the pathway from superior colliculus (SC) to mediodorsal thalamus (MD) to frontal eye field (FEF) carries a corollary discharge about saccades made into the contralateral visual field. We inactivated the MD relay node with muscimol in monkeys and measured corollary discharge deficits using a double-step task: two sequential saccades were made to the locations of briefly flashed targets. To make second saccades correctly, monkeys had to internally monitor their first saccades; therefore deficits in the corollary discharge representation of first saccades should disrupt second saccades. We found, first, that monkeys seemed to misjudge the amplitudes of their first saccades; this was revealed by systematic shifts in second saccade end points. Thus corollary discharge accuracy was impaired. Second, monkeys were less able to detect trial-by-trial variations in their first saccades; this was revealed by reduced compensatory changes in second saccade angles. Thus corollary discharge precision also was impaired. Both deficits occurred only when first saccades went into the contralateral visual field. Single-saccade generation was unaffected. Additional deficits occurred in reaction time and overall performance, but these were bilateral. We conclude that the SC-MD-FEF pathway conveys a corollary discharge used for coordinating sequential saccades and possibly for stabilizing vision across saccades. This pathway is the first elucidated in what may be a multilevel chain of corollary discharge circuits extending from the extraocular motoneurons up into cerebral cortex.
Collapse
Affiliation(s)
- Marc A Sommer
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-4435, USA.
| | | |
Collapse
|
11
|
Abstract
Our detailed understanding of the physiology and anatomy of the ocular motor system allows an accurate differential diagnosis of pathological eye movement patterns. This review covers important clinical studies and studies in basic research relevant for the neurologist published during the past year.
Collapse
Affiliation(s)
- D Straumann
- Neurology Department, Zurich University Hospital, Zurich, Switzerland.
| | | |
Collapse
|