1
|
Hemström P, Jugg B, Watkins R, Jonasson S, Elfsmark L, Rutter S, Åstot C, Lindén P. Phospholipid chlorohydrins as chlorine exposure biomarkers in a large animal model. Toxicol Lett 2024; 391:32-38. [PMID: 38048885 DOI: 10.1016/j.toxlet.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Chlorine is a toxic industrial chemical that has been used as a chemical weapon in recent armed conflicts. Confirming human exposure to chlorine has proven challenging, and there is currently no established method for analyzing human biomedical samples to unambiguously verify chlorine exposure. In this study, two chlorine-specific biomarkers: palmitoyl-oleoyl phosphatidylglycerol chlorohydrin (POPG-HOCl) and the lipid derivative oleoyl ethanolamide chlorohydrin (OEA-HOCl) are shown in bronchoalveolar lavage fluid (BALF) samples from spontaneously breathing pigs after chlorine exposure. These biomarkers are formed by the chemical reaction of chlorine with unsaturated phospholipids found in the pulmonary surfactant, which is present at the gas-liquid interface within the lung alveoli. Our results strongly suggest that lipid chlorohydrins are promising candidate biomarkers in the development of a verification method for chlorine exposure. The establishment of verified methods capable of confirming the illicit use of toxic industrial chemicals is crucial for upholding the principles of the Chemical Weapons Convention (CWC) and enforcing the ban on chemical weapons. This study represents the first published dataset in BALF revealing chlorine biomarkers detected in a large animal. Furthermore, these biomarkers are distinct in that they originate from molecular chlorine rather than hypochlorous acid.
Collapse
Affiliation(s)
- Petrus Hemström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | | | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Crister Åstot
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Pernilla Lindén
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
2
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
3
|
Cao C, Zhang L, Shen J. Phosgene-Induced acute lung injury: Approaches for mechanism-based treatment strategies. Front Immunol 2022; 13:917395. [PMID: 35983054 PMCID: PMC9378823 DOI: 10.3389/fimmu.2022.917395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phosgene (COCl2) gas is a chemical intermediate of high-volume production with numerous industrial applications worldwide. Due to its high toxicity, accidental exposure to phosgene leads to various chemical injuries, primarily resulting in chemical-induced lung injury due to inhalation. Initially, the illness is mild and presents as coughing, chest tightness, and wheezing; however, within a few hours, symptoms progress to chronic respiratory depression, refractory pulmonary edema, dyspnea, and hypoxemia, which may contribute to acute respiratory distress syndrome or even death in severe cases. Despite rapid advances in medicine, effective treatments for phosgene-inhaled poisoning are lacking. Elucidating the pathophysiology and pathogenesis of acute inhalation toxicity caused by phosgene is necessary for the development of appropriate therapeutics. In this review, we discuss extant literature on relevant mechanisms and therapeutic strategies to highlight novel ideas for the treatment of phosgene-induced acute lung injury.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Zhang
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, China
- Center of Emergency and Critical Medicine, Jinshan Hospital of Fudan University, Shanghai, China
- Training Center of Acute Poisoning Treatment Technology of Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
4
|
Watkins R, Perrott R, Bate S, Auton P, Watts S, Stoll A, Rutter S, Jugg B. Development of chlorine-induced lung injury in the anesthetized, spontaneously breathing pig. Toxicol Mech Methods 2021; 31:257-271. [PMID: 33929275 DOI: 10.1080/15376516.2021.1906808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chlorine is a toxic industrial chemical produced in vast quantities globally, being used in a range of applications such as water purification, sanitation and industrial processes. Its use and transport cannot be restricted; exposure may occur following accidental or deliberate releases. The OPCW recently verified the use of chlorine gas against civilians in both Syria and Iraq. Chlorine inhalation produces damage to the lungs, which may result in the development of an acute lung injury, respiratory failure and death. Treatment remains an intractable problem. Our objective was to develop a clinically relevant pre-clinical model of a moderate to severe lung injury in the pig. This would enable future assessment of therapeutic drugs or interventions to be implemented in the pre-hospital phase after exposure. Due to the irritant nature of chlorine, a number of strategies for exposing terminally anesthetized pigs needed to be investigated. A number of challenges (inconsistent acute changes in respiratory parameters; early deaths), resulted in a moderate to severe lung injury not being achieved. However, most pigs developed a mild lung injury by 12 h. Further investigation is required to optimize the model and enable the assessment of therapeutic candidates. In this paper we describe the exposure strategies used and discuss the challenges encountered in establishing a model of chlorine-induced lung injury. A key aim is to assist researchers navigating the challenges of producing a clinically relevant model of higher dose chlorine exposure where animal welfare is protected by use of terminal anesthesia.
Collapse
Affiliation(s)
| | | | - Simon Bate
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | - Sarah Watts
- CBR Division, Dstl Porton Down, Salisbury, UK
| | | | | | | |
Collapse
|
5
|
Hobson ST, Richieri RA, Parseghian MH. Phosgene: toxicology, animal models, and medical countermeasures. Toxicol Mech Methods 2021; 31:293-307. [PMID: 33588685 DOI: 10.1080/15376516.2021.1885544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phosgene is a gas crucial to industrial chemical processes with widespread production (∼1 million tons/year in the USA, 8.5 million tons/year worldwide). Phosgene's high toxicity and physical properties resulted in its use as a chemical warfare agent during the First World War with a designation of CG ('Choky Gas'). The industrial availability of phosgene makes it a compound of concern as a weapon of mass destruction by terrorist organizations. The hydrophobicity of phosgene exacerbates its toxicity often resulting in a delayed toxidrome as the upper airways are moderately irritated; by the time symptoms appear, significant damage has occurred. As the standard of care for phosgene intoxication is supportive therapy, a pressing need for effective therapeutics and treatment regimens exists. Proposed toxicity mechanisms for phosgene based on human and animal exposures are discussed. Whereas intermediary components in the phosgene intoxication pathways are under continued discussion, generation of reactive oxygen species and oxidative stress is a common factor. As animal models are required for the study of phosgene and for FDA approval via the Animal Rule; the status of existing models and their adherence to Haber's Rule is discussed. Finally, we review the continued search for efficacious therapeutics for phosgene intoxication; and present a rapid post-exposure response that places exogenous human heat shock protein 72, in the form of a cell-penetrating fusion protein (Fv-HSP72), into lung tissues to combat apoptosis resulting from oxidative stress. Despite significant progress, additional work is required to advance effective therapeutics for acute phosgene exposure.
Collapse
Affiliation(s)
- Stephen T Hobson
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA.,Rubicon Biotechnology, Irvine, CA, USA
| | | | | |
Collapse
|
6
|
Hobson ST, Casillas RP, Richieri RA, Nishimura RN, Weisbart RH, Tuttle R, Reynolds GT, Parseghian MH. Development of an acute, short-term exposure model for phosgene. Toxicol Mech Methods 2019; 29:604-615. [PMID: 31237465 DOI: 10.1080/15376516.2019.1636170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosgene is classified as a chemical warfare agent, yet data on its short-duration high concentration toxicity in a nose-only exposure rat model is sparse and inconsistent. Hence, an exposure system for short-term/high concentration exposure was developed and characterized. Herein, we report the median lethal concentration (LC50) for a 10-min nasal exposure of phosgene in a 24-h rat survival model. Male Wistar rats (Envigo) weighing 180-210 g on the day of exposure, were exposed to phosgene gas via nose-only inhalation using a system specifically designed to allow the simultaneous exposure and quantification of phosgene. After 24 h, the surviving rats were euthanized, the lung/body mass ratio determined, and lung tissues analyzed for histopathology. Increased terminal airway edema in the lungs located primarily at the alveoli (resulting in an increased lung/body mass ratio) coincided with the observed mortality. An LC50 value of 129.2 mg/m3 for a 10-min exposure was determined. Furthermore, in agreement with other highly toxic compounds, this study reveals a LC50 concentration value supportive of a nonlinear toxic load model, where the toxic load exponent is >1 (ne = 1.17). Thus, in line with other chemical warfare agents, phosgene toxicity is predicted to be more severe with short-duration, high-concentration exposures than long-duration, low-concentration exposures. This model is anticipated to be refined and developed to screen novel therapeutics against relevant short-term high concentration phosgene exposures expected from a terrorist attack, battlefield deployment, or industrial accident.
Collapse
Affiliation(s)
- Stephen T Hobson
- Rubicon Biotechnology , Anaheim , CA , USA.,Department of Biology and Chemistry, Liberty University , Lynchburg , VA , USA
| | | | | | - Robert N Nishimura
- University of California, Los Angeles, School of Medicine , Los Angeles , CA , USA.,Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles , CA , USA
| | - Richard H Weisbart
- University of California, Los Angeles, School of Medicine , Los Angeles , CA , USA.,Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles , CA , USA
| | | | | | | |
Collapse
|
7
|
Graham S, Fairhall S, Rutter S, Auton P, Rendell R, Smith A, Perrott R, Roberts TN, Jugg B. Continuous positive airway pressure: An early intervention to prevent phosgene-induced acute lung injury. Toxicol Lett 2018; 293:120-126. [DOI: 10.1016/j.toxlet.2017.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
8
|
Rendell R, Fairhall S, Graham S, Rutter S, Auton P, Smith A, Perrott R, Jugg B. Assessment of N -acetylcysteine as a therapy for phosgene-induced acute lung injury. Toxicol Lett 2018; 290:145-152. [DOI: 10.1016/j.toxlet.2018.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
|
9
|
Li W, Pauluhn J. Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine. Clin Transl Med 2017; 6:19. [PMID: 28577109 PMCID: PMC5457389 DOI: 10.1186/s40169-017-0149-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phosgene (carbonyl dichloride) gas is an indispensable chemical inter-mediate used in numerous industrial processes. There is no clear consensus as to its time- and inhaled-dose-dependent etiopathologies and associated preventive or therapeutic treatment strategies. METHODS Cardiopulmonary function was examined in rats exposed by inhalation to the alveolar irritant phosgene or to the airway irritant chlorine during and following exposure. Terminal measurements focused on hematology, protein extravasation in bronchoalveolar lavage (BAL), and increased lung weight. Noninvasive diagnostic and prognostic endpoints in exhaled breath (carbon dioxide and nitric oxide) were used to detect the clinically occult stage of pulmonary edema. RESULTS The first event observed in rats following high but sublethal acute exposure to phosgene was the stimulation of alveolar nociceptive vagal receptors. This afferent stimulation resulted in dramatic changes in cardiopulmonary functions, ventilation: perfusion imbalances, and progressive pulmonary edema and phospholipoproteinosis. Hematology revealed hemoconcentration to be an early marker of pulmonary edema and fibrin as a discriminating endpoint that was positive for the airway irritant chlorine and negative for the alveolar irritant phosgene. CONCLUSIONS The application of each gas produced typical ALI/ARDS (acute lung injury/acute respiratory distress syndrome) characteristics. Phosgene-induced ALI showed evidence of persistent apnea periods, bradycardia, and shifts of vascular fluid from the peripheral to the pulmonary circulation. Carbon dioxide in expired gas was suggestive of increased ventilation dead space and appeared to be a harbinger of progressively developing lung edema. Treatment with the iNOS inhibitor aminoguanidine aerosol by inhalation reduced the severity of phosgene-induced ALI when applied at low dose-rates. Symptomatic treatment regimens were considered inferior to causal modes of treatment.
Collapse
Affiliation(s)
- Wenli Li
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
| | - Juergen Pauluhn
- 4th Department of Toxicology, Fourth Military Medical University, No. 169 Changle West Road, Xi’an, 710032 Shaanxi Province China
- Covestro Deutschland AG, Global Phosgene Steering Group, K9, 565, 51365 Leverkusen, Germany
| |
Collapse
|
10
|
Zhao DH, Wu YJ, Liu ST, Liu RY. Salvianolic acid B attenuates lipopolysaccharide-induced acute lung injury in rats through inhibition of apoptosis, oxidative stress and inflammation. Exp Ther Med 2017; 14:759-764. [PMID: 28672996 DOI: 10.3892/etm.2017.4534] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/06/2017] [Indexed: 01/16/2023] Open
Abstract
The present study was performed to assess the protective effect of salvianolic acid B on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Sprague Dawley rats were injected with 100 µg/kg LPS through a 24-gauge catheter. One group of rats was pre-treated with salvianolic acid B (1 mg/ml; 20 ml/kg body weight) 1 h prior to LPS challenge, then 20 ml/kg salvianolic acid B every 2 days for 4 weeks thereafter. Salvianolic acid B attenuated LPS-induced increases in the lung wet/dry weight rate and lung tissue injury in ALI model rats. LPS-induced changes in the content of caspase-3, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, tumor necrosis factor-α and interleukin-6 in ALI model rats were attenuated by treatment with salvianolic acid B. Furthermore, treatment with salvianolic acid B inhibited the protein expression of type I collagen I, endogenous transforming growth factor-β1 production and α-smooth muscle actin in ALI model rats. These findings indicated that salvianolic acid B attenuates LPS-induced ALI through inhibition of apoptosis, oxidative stress and inflammation in rats and therefore exertsa protective effect against ALI.
Collapse
Affiliation(s)
- Da-Hai Zhao
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China.,Department of Pulmonary Medicine, Anhui Geriatric Institute, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu-Jie Wu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shu-Ting Liu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Rong-Yu Liu
- Department of Pulmonary Medicine, Anhui Geriatric Institute, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
11
|
Summerhill EM, Hoyle GW, Jordt SE, Jugg BJ, Martin JG, Matalon S, Patterson SE, Prezant DJ, Sciuto AM, Svendsen ER, White CW, Veress LA. An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Ann Am Thorac Soc 2017; 14:1060-1072. [PMID: 28418689 PMCID: PMC5529138 DOI: 10.1513/annalsats.201704-297ws] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report is based on the proceedings from the Inhalational Lung Injury Workshop jointly sponsored by the American Thoracic Society (ATS) and the National Institutes of Health (NIH) Countermeasures Against Chemical Threats (CounterACT) program on May 21, 2013, in Philadelphia, Pennsylvania. The CounterACT program facilitates research leading to the development of new and improved medical countermeasures for chemical threat agents. The workshop was initiated by the Terrorism and Inhalational Disasters Section of the Environmental, Occupational, and Population Health Assembly of the ATS. Participants included both domestic and international experts in the field, as well as representatives from U.S. governmental funding agencies. The meeting objectives were to (1) provide a forum to review the evidence supporting current standard medical therapies, (2) present updates on our understanding of the epidemiology and underlying pathophysiology of inhalational lung injuries, (3) discuss innovative investigative approaches to further delineating mechanisms of lung injury and identifying new specific therapeutic targets, (4) present promising novel medical countermeasures, (5) facilitate collaborative research efforts, and (6) identify challenges and future directions in the ongoing development, manufacture, and distribution of effective and specific medical countermeasures. Specific inhalational toxins discussed included irritants/pulmonary toxicants (chlorine gas, bromine, and phosgene), vesicants (sulfur mustard), chemical asphyxiants (cyanide), particulates (World Trade Center dust), and respirable nerve agents.
Collapse
|
12
|
Rice H, Mann TM, Armstrong SJ, Price ME, Green AC, Tattersall JE. The potential role of bioscavenger in the medical management of nerve-agent poisoned casualties. Chem Biol Interact 2016; 259:175-181. [DOI: 10.1016/j.cbi.2016.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
|
13
|
Abstract
INTRODUCTION Phosgene is a rare exposure with strong clinical implications. We report a phosgene exposure that resulted in the patient's death. CASE REPORT A 58 year-old man arrived to the emergency department 1 hour after exposure to phosgene with complaints of a sore throat. Initial vital signs were blood pressure 175/118 mmHg, heart rate 98/min, respirations 12/min, and oxygen saturation of 93% on room air. Physical exam revealed few scattered rhonchi, without signs of distress. Initial arterial blood gases (ABG's) revealed pH 7.42, pCO2 43 mmHg, pO2 68 mmHg, HCO3 27 meq/L, and oxygen saturation of 93% on room air. Initial chest x-ray 2 hours after the exposure demonstrated clear lung fields. Approximately 2.5 hours after the exposure, he began complaining of dyspnea, restlessness and his oxygen saturation dropped below 90%. He received nebulized albuterol, 1 gram intravenous methylprednisolone, and 100 % oxygen via face mask. Minimal improvement was noted and he was intubated. The post intubation chest x-ray, 3.5 hours after the exposure, revealed diffuse alveolar infiltrates. Acetylcysteine, terbutaline, and IV steroids were administered without improvement. The patient died 30 hours after exposure. DISCUSSION There are many misunderstandings concerning phosgene due to its rare presentation. Traditional treatment modalities are often unproven in human trials and were unsuccessful in this case. CONCLUSION This case highlights the significant toxicity that results from phosgene exposure and the challenges of the limited treatment modalities. There is concern for the use of this agent in chemical terrorism.
Collapse
|
14
|
Jugg BJA, Smith AJ, Rudall SJ, Rice P. The injured lung: clinical issues and experimental models. Philos Trans R Soc Lond B Biol Sci 2011; 366:306-9. [PMID: 21149368 DOI: 10.1098/rstb.2010.0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of military and civilian populations to inhaled toxic chemicals can take place as a result of deliberate release (warfare, terrorism) or following accidental releases from industrial concerns or transported chemicals. Exposure to inhaled toxic chemicals can result in an acute lung injury, and in severe cases acute respiratory distress syndrome, for which there is currently no specific medical therapy, treatment remaining largely supportive. This treatment often requires intensive care facilities that may become overwhelmed in mass casualty events and may be of limited benefit in severe cases. There remains, therefore, a need for evidence-based treatment to inform both military and civilian medical response teams on the most appropriate treatment for chemically induced lung injury. This article reviews data used to derive potential clinical management strategies for chemically induced lung injury.
Collapse
Affiliation(s)
- B J A Jugg
- Biomedical Sciences Department, Dstl Porton Down, Salisbury SP4 OJQ, UK
| | | | | | | |
Collapse
|
15
|
Grainge C, Smith A, Jugg B, Fairhall S, Mann T, Perrott R, Jenner J, Millar T, Rice P. Furosemide in the Treatment of Phosgene Induced Acute Lung Injury. J ROY ARMY MED CORPS 2010. [DOI: 10.1136/jramc-156-04-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Abstract
CONTEXT Phosgene is a substance of immense importance in the chemical industry. Because of its widespread industrial use, there is potential for small-scale exposures within the workplace, large-scale accidental release, or even deliberate release into a built-up area. OBJECTIVE This review aims to examine all published studies concerning potential treatments for phosgene-induced acute lung injury and incorporate them into up-to-date clinical guidance. In addition, it aims to contrast the approaches when dealing with small numbers of patients known to be exposed (possibly with dose information) with the presentation of a large and heterogeneous population of casualties following a significant industrial accident or deliberate release; no published guidelines have specifically addressed this second problem. METHODS PubMed and Embase were searched for all available years till April 2010 and 584 papers were identified and considered. EXPERIMENTAL STUDIES Because of the nature of the injury, there have been no human trials of patients exposed to phosgene. Multiple small and large animal studies have been performed to examine potential treatments of phosgene-induced acute lung injury, but many of these used isolated organ models, pretreatment regimens, or clinically improbable doses. Recent studies in large animals using both realistic time frames and dosing regimens have improved our knowledge, but clinical guidance remains based on incomplete data. Management of a small-scale, confirmed exposure. In the circumstance of a small-scale, confirmed industrial release where a few individuals are exposed and present rapidly, an intravenous bolus of high-dose corticosteroid (e.g., methylprednisolone 1 g) should be considered, although there are no experimental data to support this recommendation. The evidence is that there is no benefit from nebulized steroid even when administered 1 h after exposure, or methylprednisolone if administered intravenously ≥6 h after exposure. Consideration should also be given to administration of nebulized acetylcysteine 1-2 g, though there is no substantive evidence of benefit outside a small animal, isolated lung model and there is a possibility of adverse effects. If the oxygen saturation falls below 94%, patients should receive the lowest concentration of supplemental oxygen to maintain their SaO(2) in the normal range. Once patients require oxygen, nebulized β-agonists [e.g., salbutamol (albuterol) 5 mg by nebulizer every 4 h] may reduce lung inflammation if administered within 1 h of exposure. Elective intubation should be considered early using an ARDSnet protective ventilation strategy. Management of a large-scale, non-confirmed exposure. In the circumstances of a large-scale industrial or urban release, not all patients presenting will have been exposed and health services are likely to be highly stretched. In this situation, patients should not be treated immediately as there is no evidence that delaying therapy causes harm, rather they should be rested and observed with regular physical examination and measurement of peripheral oxygen saturations. Once a patient's oxygen saturation falls below 94%, treatment with the lowest concentration of oxygen required to maintain their oxygen saturations in the normal range should be started. Once oxygen has been started, nebulized β-agonists [e.g., salbutamol (albuterol) 5 mg by nebulizer every 4 h] may reduce lung inflammation if administered within 1 h of exposure, though delayed administration which is likely following a large-scale release has not been tested formally. There is no benefit from nebulized steroid even when administered 1 h after exposure, or high-dose corticosteroid if administered intravenously ≥6 h after exposure. Although there are no experimental data to support this recommendation, an intravenous bolus of high-dose corticosteroid (e.g., methylprednisolone 1 g) may be considered if presentation is <6 h and resources allow. Depending on the numbers of casualties presenting, invasive ventilation should be initiated either electively once symptoms present (especially where there is a short latent period, indicating likelihood of more significant injury), or delayed until required. Ventilation should be with high positive end expiratory pressure, ARDSnet recommended ventilation. CONCLUSIONS The mechanisms underlying the phosgene-induced acute lung injury are not well understood. Future experimental work should ensure that potential treatments are tested in a large animal model using realistic dosing regimens and clinically relevant timings, such as those that might be found in a mass casualty situation.
Collapse
Affiliation(s)
- Christopher Grainge
- Department of Military Medicine, Royal Centre for Defence Medicine, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
17
|
Zhang XD, Hou JF, Qin XJ, Li WL, Chen HL, Liu R, Liang X, Hai CX. Pentoxifylline inhibits intercellular adhesion molecule-1 (ICAM-1) and lung injury in experimental phosgene-exposure rats. Inhal Toxicol 2010; 22:889-95. [DOI: 10.3109/08958378.2010.493900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|