1
|
Wang Q, Kim T, Martínez-Bonet M, Aguiar VRC, Sim S, Cui J, Sparks JA, Chen X, Todd M, Wauford B, Marion MC, Langefeld CD, Weirauch MT, Gutierrez-Arcelus M, Nigrovic PA. High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus. Nat Commun 2024; 15:6804. [PMID: 39122710 PMCID: PMC11315931 DOI: 10.1038/s41467-024-50710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Genome-wide association studies implicate multiple loci in risk for systemic lupus erythematosus (SLE), but few contain exonic variants, rendering systematic identification of non-coding variants essential to decoding SLE genetics. We utilized SNP-seq and bioinformatic enrichment to interrogate 2180 single-nucleotide polymorphisms (SNPs) from 87 SLE risk loci for potential binding of transcription factors and related proteins from B cells. 52 SNPs that passed initial screening were tested by electrophoretic mobility shift and luciferase reporter assays. To validate the approach, we studied rs2297550 in detail, finding that the risk allele enhanced binding to the transcription factor Ikaros (encoded by IKZF1), thereby modulating expression of IKBKE. Correspondingly, primary cells from genotyped healthy donors bearing the risk allele expressed higher levels of the interferon / NF-κB regulator IKKε. Together, these findings define a set of likely functional non-coding lupus risk variants and identify a regulatory pathway involving rs2297550, Ikaros, and IKKε implicated by human genetics in risk for SLE.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangwan Sim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marc Todd
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Wauford
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Miranda C Marion
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew T Weirauch
- Center of Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Nigrovic PA, Wang Q, Kim T, Martinez-Bonet M, Aguiar VRC, Sim S, Cui J, Sparks JA, Chen X, Todd M, Wauford B, Marion MC, Langefeld CD, Weirauch MT, Gutierrez-Arcelus M. High-throughput identification of functional regulatory SNPs in systemic lupus erythematosus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553538. [PMID: 37645953 PMCID: PMC10462027 DOI: 10.1101/2023.08.16.553538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Genome-wide association studies implicate multiple loci in risk for systemic lupus erythematosus (SLE), but few contain exonic variants, rendering systematic identification of non-coding variants essential to decoding SLE genetics. We utilized SNP-seq and bioinformatic enrichment to interrogate 2180 single-nucleotide polymorphisms (SNPs) from 87 SLE risk loci for potential binding of transcription factors and related proteins from B cells. 52 SNPs that passed initial screening were tested by electrophoretic mobility shift and luciferase reporter assays. To validate the approach, we studied rs2297550 in detail, finding that the risk allele enhanced binding to the transcription factor Ikaros (IKZF1), thereby modulating expression of IKBKE. Correspondingly, primary cells from genotyped healthy donors bearing the risk allele expressed higher levels of the interferon / NF-κB regulator IKKϵ. Together, these findings define a set of likely functional non-coding lupus risk variants and identify a new regulatory pathway involving rs2297550, Ikaros, and IKKϵ implicated by human genetics in risk for SLE.
Collapse
|
3
|
Rodolfi S, Davidson C, Vecellio M. Regulatory T cells in spondyloarthropathies: genetic evidence, functional role, and therapeutic possibilities. Front Immunol 2024; 14:1303640. [PMID: 38288110 PMCID: PMC10822883 DOI: 10.3389/fimmu.2023.1303640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Regulatory T cells (Tregs) are a very specialized subset of T lymphocytes: their main function is controlling immune responses during inflammation. T-regs involvement in autoimmune and immune-mediated rheumatic diseases is well-described. Here, we critically review the up-to-date literature findings on the role of Tregs in spondyloarthropathies, particularly in ankylosing spondylitis (AS), a polygenic inflammatory rheumatic disease that preferentially affects the spine and the sacroiliac joints. Genetics discoveries helped in elucidating pathogenic T-regs gene modules and functional involvement. We highlight T-regs tissue specificity as crucial point, as T-regs might have a distinct epigenomic and molecular profiling depending on the different site of tissue inflammation. Furthermore, we speculate about possible therapeutic interventions targeting, or enhancing, Treg cells in spondyloarthropathies.
Collapse
Affiliation(s)
- Stefano Rodolfi
- Department of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matteo Vecellio
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centro Ricerche Fondazione Italiana Ricerca Sull'Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, San Giuliano Terme, Italy
| |
Collapse
|
4
|
Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2023; 37:101864. [PMID: 37625930 DOI: 10.1016/j.berh.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberto Depascale
- Unit of Rheumatology, Department of Medicine, University of Padova, Padova, Italy
| | - Ana Luisa Stefanski
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Eva Schrezenmeier
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2023:10.1038/s41418-023-01212-2. [PMID: 37620540 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
6
|
Cheng Y, Gaudy A, Liu L, Ye Y, Thomas M, Xue Y, Zhou S, Li Y. Exposure-Response Analysis to Assess the Concentration-QTc Relationship of Iberdomide. Clin Pharmacol Drug Dev 2023; 12:819-825. [PMID: 37079714 DOI: 10.1002/cpdd.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/26/2023] [Indexed: 04/22/2023]
Abstract
Iberdomide is an orally available cereblon-modulating agent being developed for the treatment of hematologic malignancies and autoimmune-mediated diseases. To assess the potential concentration-QTc relationship in humans and to ascertain or exclude a potential QT effect by iberdomide, a plasma concentration and ΔQTcF (change from baseline of corrected QT interval using the Fridericia formula) model of iberdomide was developed. Iberdomide concentration and paired high-quality, intensive electrocardiogram signal from a single-ascending-dose study in healthy subjects (N = 56) were included in the analysis. The primary analysis was based on a linear mixed-effect model with ΔQTcF as the dependent variable; iberdomide plasma concentration and baseline QTcF as continuous covariates; treatment (active or placebo) and time as a categorical factor; and a random intercept per subject. The predicted change from baseline and placebo corrected (ΔΔQTcF) at the observed geometric mean maximum plasma concentration and 2-sided 90% confidence intervals at different dose levels were calculated. The upper bound of the 90% confidence interval of the model-predicted ΔΔQTcF effect at maximum concentration from the supratherapeutic dose of 6 mg (2.54 milliseconds) is <10-millisecond threshold, suggesting that iberdomide does not have a clinically relevant QT prolongation liability.
Collapse
Affiliation(s)
- Yiming Cheng
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Allison Gaudy
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Liangang Liu
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Ying Ye
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Michael Thomas
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Yongjun Xue
- Nonclinical Research & Development, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Simon Zhou
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| | - Yan Li
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
7
|
Mauro D, Manou-Stathopoulou S, Rivellese F, Sciacca E, Goldmann K, Tsang V, Lucey-Clayton I, Pagani S, Alam F, Pyne D, Rajakariar R, Gordon PA, Whiteford J, Bombardieri M, Pitzalis C, Lewis MJ. UBE2L3 regulates TLR7-induced B cell autoreactivity in Systemic Lupus Erythematosus. J Autoimmun 2023; 136:103023. [PMID: 37001433 DOI: 10.1016/j.jaut.2023.103023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Both TLR7 and NF-κB hyperactivity are known to contribute to pathogenesis in Systemic Lupus Erythematosus (SLE), driving a pro-interferon response, autoreactive B cell expansion and autoantibody production. UBE2L3 is an SLE susceptibility gene which drives plasmablast/plasma cell expansion in SLE, but its role in TLR7 signalling has not been elucidated. We aimed to investigate the role of UBE2L3 in TLR7-mediated NF-κB activation, and the effect of UBE2L3 inhibition by Dimethyl Fumarate (DMF) on SLE B cell differentiation in vitro. Our data demonstrate that UBE2L3 is critical for activation of NF-κB downstream of TLR7 stimulation, via interaction with LUBAC. DMF, which directly inhibits UBE2L3, significantly inhibited TLR7-induced NF-κB activation, differentiation of memory B cells and plasmablasts, and autoantibody secretion in SLE. DMF also downregulated interferon signature genes and plasma cell transcriptional programmes. These results demonstrate that UBE2L3 inhibition could potentially be used as a therapy in SLE through repurposing of DMF, thus preventing TLR7-driven autoreactive B cell maturation.
Collapse
|
8
|
Mok CC. Targeted Small Molecules for Systemic Lupus Erythematosus: Drugs in the Pipeline. Drugs 2023; 83:479-496. [PMID: 36972009 PMCID: PMC10042116 DOI: 10.1007/s40265-023-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Despite the uncertainty of the pathogenesis of systemic lupus erythematosus, novel small molecules targeting specific intracellular mechanisms of immune cells are being developed to reverse the pathophysiological processes. These targeted molecules have the advantages of convenient administration, lower production costs, and the lack of immunogenicity. The Janus kinases, Bruton's tyrosine kinases, and spleen tyrosine kinases are important enzymes for activating downstream signals from various receptors on immune cells that include cytokines, growth factor, hormones, Fc, CD40, and B-cell receptors. Suppression of these kinases impairs cellular activation, differentiation, and survival, leading to diminished cytokine actions and autoantibody secretion. Intracellular protein degradation by immunoproteasomes, levered by the cereblon E3 ubiquitin ligase complex, is an essential process for the regulation of cellular functions and survival. Modulation of the immunoproteasomes and cereblon leads to depletion of long-lived plasma cells, reduced plasmablast differentiation, and production of autoantibodies and interferon-α. The sphingosine 1-phosphate/sphingosine 1-phosphate receptor-1 pathway is responsible for lymphocyte trafficking, regulatory T-cell/Th17 cell homeostasis, and vascular permeability. Sphingosine 1-phosphate receptor-1 modulators limit the trafficking of autoreactive lymphocytes across the blood-brain barrier, increase regulatory T-cell function, and decrease production of autoantibodies and type I interferons. This article summarizes the development of these targeted small molecules in the treatment of systemic lupus erythematosus, and the future prospect for precision medicine.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Tsing Chung Koon Road, New Territories, Hong Kong SAR, China.
| |
Collapse
|
9
|
Cheng Y, Ye Y, Gaudy A, Ghosh A, Xue Y, Wang A, Zhou S, Li Y. A Phase 1, Multicenter, Open-Label Study to Evaluate the Pharmacokinetics of Iberdomide in Subjects with Mild, Moderate, or Severe Hepatic Impairment Compared with Healthy Subjects. Clin Pharmacol 2023; 15:9-19. [PMID: 36880014 PMCID: PMC9985425 DOI: 10.2147/cpaa.s397826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Introduction Iberdomide, a novel cereblon modulator (CELMoD®), is currently under clinical investigation for hematology indications. To evaluate the influence of hepatic impairment on the pharmacokinetics (PK) of iberdomide and its major active metabolite M12, a phase 1, multicenter, open-label study was conducted in healthy subjects and subjects with mild, moderate, and severe hepatic impairment. Methods Forty subjects were enrolled in the study and divided into five groups based on hepatic function. 1 mg iberdomide was administered and plasma samples were collected to evaluate the pharmacokinetics of iberdomide and M12. Results After a single dose of iberdomide (1 mg), mean iberdomide Cmax (maximum observed concentration) and AUC (area under the concentration-time curve) exposure were generally comparable between hepatic impairment (HI) subjects (severe, moderate and mild) and their respective matched normal controls. Mean Cmax and AUC exposure of the metabolite M12 were generally comparable between mild HI and matched normal subjects. However, mean Cmax of the M12 was 30% and 65% lower and AUC was 57% and 63% lower in moderate and severe HI subjects as compared to their respective matched normal controls. However, given the relatively low M12 exposure as compared to its parent drug, the observed differences were not considered clinically meaningful. Conclusion In summary, 1 mg single oral dose of iberdomide was generally well-tolerated. HI (mild, moderate or severe) had no clinically relevant impact on iberdomide PK and therefore, no dose adjustment is warranted.
Collapse
Affiliation(s)
- Yiming Cheng
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Ying Ye
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Allison Gaudy
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Atalanta Ghosh
- Global Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ, USA
| | - Yongjun Xue
- Nonclinical Research & Development, Bristol Myers Squibb, Princeton, NJ, USA
| | - Alice Wang
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Simon Zhou
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Yan Li
- Clinical Pharmacology & Pharmacometrics, Bristol Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
10
|
Wang Z, Waldman MF, Basavanhally TJ, Jacobs AR, Lopez G, Perichon RY, Ma JJ, Mackenzie EM, Healy JB, Wang Y, Hersey SA. Autoimmune gene expression profiling of fingerstick whole blood in Chronic Fatigue Syndrome. J Transl Med 2022; 20:486. [PMID: 36284352 PMCID: PMC9592873 DOI: 10.1186/s12967-022-03682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions. The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS. In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease. METHODS In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home. RNA from the fingerstick blood was tested using DxTerity's 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method. RESULTS Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease. From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to patients with mild to moderate disease conditions. These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases. These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA). Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives). CONCLUSIONS Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity. These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.
Collapse
Affiliation(s)
- Zheng Wang
- Bristol Myers Squibb, Princeton, NJ 08540 USA
| | | | | | | | | | | | | | | | | | - Yixin Wang
- Bristol Myers Squibb, Princeton, NJ 08540 USA
| | | |
Collapse
|
11
|
Gao M, Liu S, Chatham WW, Mountz JD, Hsu HC. IL-4-Induced Quiescence of Resting Naive B Cells Is Disrupted in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1513-1522. [PMID: 36165181 PMCID: PMC9741951 DOI: 10.4049/jimmunol.2200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
Activated naive (aNAV) B cells have been shown to be the precursor of the CD11c+T-bet+ IgD-CD27- double-negative (DN)2 or atypical memory (aMEM) B cells in systemic lupus erythematosus (SLE). To determine factors that maintain resting naive (rNAV) B cells, the transcriptomic program in naive (IGHD+IGHM +) B cells in human healthy control subjects (HC) and subjects with SLE was analyzed by single-cell RNA-sequencing analysis. In HC, naive B cells expressed IL-4 pathway genes, whereas in SLE, naive B cells expressed type I IFN-stimulated genes (ISGs). In HC, aNAV B cells exhibited upregulation of the gene signature of germinal center and classical memory (cMEM) B cells. In contrast, in SLE, aNAV B cells expressed signature genes of aMEM. In vitro exposure of SLE B cells to IL-4 promoted B cell development into CD27+CD38+ plasmablasts/plasma and IgD-CD27+ cMEM B cells. The same treatment blocked the development of CD11c+Tbet+ aNAV and DN2 B cells and preserved DN B cells as CD11c-Tbet- DN1 B cells. Lower expression of IL-4R and increased intracellular IFN-β in naive B cells was correlated with the accumulation of CD21-IgD- B cells and the development of anti-Smith and anti-DNA autoantibodies in patients with SLE (n = 47). Our results show that IL-4R and type I IFN signaling in naive B cells induce the development of distinct lineages of cMEM versus aMEM B cells, respectively. Furthermore, diminished IL-4R signaling shifted activated B cell development from the DN1 to the DN2 trajectory in patients with SLE. Therapies that enhance IL-4R signaling may be beneficial for ISGhi SLE patients.
Collapse
Affiliation(s)
- Min Gao
- University of Alabama at Birmingham, Birmingham, AL; and
| | - Shanrun Liu
- University of Alabama at Birmingham, Birmingham, AL; and
| | - W Winn Chatham
- University of Alabama at Birmingham, Birmingham, AL; and
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL; and
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
| |
Collapse
|