1
|
Butler M, Shah P, Ozgen B, Michals EA, Geraghty JR, Testai FD, Maharathi B, Loeb JA. Automated segmentation of ventricular volumes and subarachnoid hemorrhage from computed tomography images: Evaluation of a rule-based pipeline approach. Neuroradiol J 2024:19714009241260791. [PMID: 38869365 DOI: 10.1177/19714009241260791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Changes in ventricular size, related to brain edema and hydrocephalus, as well as the extent of hemorrhage are associated with adverse outcomes in patients with subarachnoid hemorrhage (SAH). Frequently, these are measured manually using consecutive non-contrast computed tomography scans. Here, we developed a rule-based approach which incorporates both intensity and spatial normalization and utilizes user-defined thresholds and anatomical templates to segment both lateral ventricle (LV) and SAH blood volumes automatically from CT images. The algorithmic segmentations were evaluated against two expert neuroradiologists on representative slices from 20 admission scans from aneurysmal SAH patients. Previous methods have been developed to automate this time-consuming task, but they lack user feedback and are hard to implement due to large-scale data and complex design processes. Our results using automatic ventricular segmentation aligned well with expert reviewers with a median Dice coefficient of 0.81, AUC of 0.91, sensitivity of 81%, and precision of 84%. Automatic segmentation of SAH blood was most reliable near the base of the brain with a median Dice coefficient of 0.51, an AUC of 0.75, precision of 68%, and sensitivity of 50%. Ultimately, we developed a rule-based method that is easily adaptable through user feedback, generates spatially normalized segmentations that are comparable regardless of brain morphology or acquisition conditions, and automatically segments LV with good overall reliability and basal SAH blood with good precision. Our approach could benefit longitudinal studies in patients with SAH by streamlining assessment of edema and hydrocephalus progression, as well as blood resorption.
Collapse
Affiliation(s)
- Mitchell Butler
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Parin Shah
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA
| | - Burce Ozgen
- Department of Radiology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Edward A Michals
- Department of Radiology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Joseph R Geraghty
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jeffrey A Loeb
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Chen S, Jiang H, He P, Tang X, Chen Q. New grading scale based on early factors for predicting delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: a multicenter retrospective study. Front Neurol 2024; 15:1393733. [PMID: 38882700 PMCID: PMC11178102 DOI: 10.3389/fneur.2024.1393733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Delayed cerebral ischemia (DCI) could lead to poor clinical outcome(s). The aim of the present study was to establish and validate a predictive model for DCI after aneurysmal subarachnoid hemorrhage (aSAH) based on clinical data. Data from a series of 217 consecutive patients with aSAH were reviewed and analyzed. Related risk factors within 72 h after aSAH were analyzed depending on whether DCI recurred. Least absolute shrinkage and selection operator (LASSO) analysis was performed to reduce data dimensions and screen for optimal predictors. Multivariable logistic regression was used to establish a predictive model and construct a nomogram. Receiver operating characteristic (ROC) and calibration curves were generated to assess the discriminative ability and goodness of fit of the model. Decision curve analysis was applied to evaluated the clinical applicability of the predictive model. LASSO regression identified 4 independent predictors, including Subarachnoid Hemorrhage Early Brain Edema Score (i.e., "SEBES"), World Federation of Neurosurgical Societies scale score (i.e., "WFNS"), modified Fisher Scale score, and intraventricular hemorrhage (IVH), which were incorporated into logistic regression to develop a nomogram. After verification, the area under the ROC curve for the model was 0.860. The calibration curve indicated that the predictive probability of the new model was in good agreement with the actual probability, and decision curve analysis demonstrated the clinical applicability of the model within a specified range. The prediction model could precisely calculate the probability of DCI after aSAH, and may contribute to better clinical decision-making and personalized treatment to achieve better outcomes.
Collapse
Affiliation(s)
- Shishi Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Jingzhou Central Hospital, Jingzhou, China
| | - Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Peidong He
- First School of Clinical Medicine of Wuhan University, Wuhan, China
| | - Xiangjun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Tuzi S, Kranawetter B, Moerer O, Rohde V, Mielke D, Malinova V. Influence of cerebrospinal fluid drainage in the first days after aneurysm rupture on the severity of early brain injury following aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 2024; 166:234. [PMID: 38805034 PMCID: PMC11133135 DOI: 10.1007/s00701-024-06131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Progressive cerebral edema with refractory intracranial hypertension (ICP) requiring decompressive hemicraniectomy (DHC) is a severe manifestation of early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (aSAH). The purpose of the study was to investigate whether a more pronounced cerebrospinal fluid (CSF) drainage has an influence on cerebral perfusion pressure (CPP) and the extent of EBI after aSAH. METHODS Patients with aSAH and indication for ICP-monitoring admitted to our center between 2012 and 2020 were retrospectively included. EBI was categorized based on intracranial blood burden, persistent loss of consciousness, and SEBES (Subarachnoid Hemorrhage Early Brain Edema Score) score on the third day after ictus. The draining CSF and vital signs such as ICP and CPP were documented daily. RESULTS 90 out of 324 eligible aSAH patients (28%) were included. The mean age was 54.2 ± 11.9 years. DHC was performed in 24% (22/90) of patients. Mean CSF drainage within 72 h after ictus was 168.5 ± 78.5 ml. A higher CSF drainage within 72 h after ictus correlated with a less severe EBI and a less frequent need for DHC (r=-0.33, p = 0.001) and with a higher mean CPP on day 3 after ictus (r = 0.2351, p = 0.02). CONCLUSION A more pronounced CSF drainage in the first 3 days of aSAH was associated with higher CPP and a less severe course of EBI and required less frequently a DHC. These results support the hypothesis that an early and pronounced CSF drainage may facilitate blood clearance and positively influence the course of EBI.
Collapse
Affiliation(s)
- Sheri Tuzi
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Beate Kranawetter
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Chen XX, Tao T, Liu XZ, Wu W, Wang JW, Yue TT, Li XJ, Zhou Y, Gao S, Sheng B, Peng Z, Xu HJ, Ding PF, Wu LY, Zhang DD, Lu Y, Hang CH, Li W. P38-DAPK1 axis regulated LC3-associated phagocytosis (LAP) of microglia in an in vitro subarachnoid hemorrhage model. Cell Commun Signal 2023; 21:175. [PMID: 37480108 PMCID: PMC10362611 DOI: 10.1186/s12964-023-01173-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The phagocytosis and homeostasis of microglia play an important role in promoting blood clearance and improving prognosis after subarachnoid hemorrhage (SAH). LC3-assocaited phagocytosis (LAP) contributes to the microglial phagocytosis and homeostasis via autophagy-related components. With RNA-seq sequencing, we found potential signal pathways and genes which were important for the LAP of microglia. METHODS We used an in vitro model of oxyhemoglobin exposure as SAH model in the study. RNA-seq sequencing was performed to seek critical signal pathways and genes in regulating LAP. Bioparticles were used to access the phagocytic ability of microglia. Western blot (WB), immunoprecipitation, quantitative polymerase chain reaction (qPCR) and immunofluorescence were performed to detect the expression change of LAP-related components and investigate the potential mechanisms. RESULTS In vitro SAH model, there were increased inflammation and decreased phagocytosis in microglia. At the same time, we found that the LAP of microglia was inhibited in all stages. RNA-seq sequencing revealed the importance of P38 MAPK signal pathway and DAPK1 in regulating microglial LAP. P38 was found to regulate the expression of DAPK1, and P38-DAPK1 axis was identified to regulate the LAP and homeostasis of microglia after SAH. Finally, we found that P38-DAPK1 axis regulated expression of BECN1, which indicated the potential mechanism of P38-DAPK1 axis regulating microglial LAP. CONCLUSION P38-DAPK1 axis regulated the LAP of microglia via BECN1, affecting the phagocytosis and homeostasis of microglia in vitro SAH model. Video Abstract.
Collapse
Affiliation(s)
- Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tao Tao
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin-Wei Wang
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Ting-Ting Yue
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hua-Jie Xu
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng-Fei Ding
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ding-Ding Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Ritzenthaler T, Gobert F, Bouchier B, Dailler F. Amount of blood during the subacute phase and clot clearance rate as prognostic factors for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Clin Neurosci 2021; 87:74-79. [PMID: 33863538 DOI: 10.1016/j.jocn.2021.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/14/2020] [Accepted: 02/06/2021] [Indexed: 11/30/2022]
Abstract
Delayed cerebral ischemia (DCI) is a poorly predictable complication occurring after aneurysmal subarachnoid hemorrhage (SAH) that can have dramatic functional consequences. Identifying the patients with the highest risk of DCI may help to institute more suitable monitoring and therapy. Early brain injuries and aneurysm-securing procedure complications could be regarded as confounding factors leading to severity misjudgment. After an early resuscitation phase, a subacute assessment may be more relevant to integrate the intrinsic SAH severity. A retrospective analysis was performed upon patients prospectively included in the registry of SAH patients between July 2015 to April 2020. The amount of cisternal and intraventricular blood were assessed semi-quantitatively on acute and subacute CT scans performed after early resuscitation. A clot clearance rate was calculated from their comparison. The primary endpoint was the occurrence of a DCI. A total of 349 patients were included in the study; 80 (22.9%) experienced DCI. In those patients, higher Fisher grades were observed on acute (p = 0.026) and subacute (p = 0.003) CT scans. On the subacute CT scan, patients who experienced DCI had a higher amount of blood, either at the cisternal (median Hijdra sum score: 11 vs 5, p < 0.001) or intraventricular (median Graeb score: 4 vs 2, p < 0.001) level. There was a negative linear relationship between the cisternal clot clearance rate and the risk of DCI. The assessment of the amount of subarachnoid blood and clot clearance following resuscitation after aneurysmal SAH can be useful for the prediction of neurological outcome.
Collapse
Affiliation(s)
- Thomas Ritzenthaler
- Service de réanimation neurologique, Hôpital neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69 bld Pinel, 69650 BRON Cedex, France.
| | - Florent Gobert
- Service de réanimation neurologique, Hôpital neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69 bld Pinel, 69650 BRON Cedex, France
| | - Baptiste Bouchier
- Service de réanimation neurologique, Hôpital neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69 bld Pinel, 69650 BRON Cedex, France
| | - Frédéric Dailler
- Service de réanimation neurologique, Hôpital neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69 bld Pinel, 69650 BRON Cedex, France
| |
Collapse
|