1
|
Jamal A, Haq GU, Hussain S, Gul M, Saifullah M, Anjum MAR. Enhanced Tribological Properties of Electrodeposited Fe-W Alloy Coatings through Carburization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16328-16335. [PMID: 37939319 DOI: 10.1021/acs.langmuir.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Carburization is a promising surface-hardening approach to maximize the tribological and mechanical properties of metals and alloys by making thin-layer surface carbides. The current study investigates the effect of carburizing on the electrodeposited Fe-W alloy coating. This process involeves the thermal decomposition of ethanol in an argon (Ar) atmosphere at varying temperatures. The amorphous electrodeposits of Fe-W alloy coating formed at optimized current density (500 A/cm2) are transformed to the uniform W-rich reinforced bimetallic carbide (Fe3W3C) layers at a carburizing temperature of 850 °C. The sample Fe-50WC (850 °C) shows enhanced hardness and highest wear resistance with a lowest specific wear rate (10-7 mm3/Nm) as compared to the as-electrodeposited Fe-W alloy and other Fe-W, Co-W, and hard chromium coatings reported in the literature. The present strategy can be applied to develop alternative, low cost, and environmentally friendly W-based composite coatings to replace the toxic chromium coatings.
Collapse
Affiliation(s)
- Ahsan Jamal
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Gulfam-Ul Haq
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Shabbir Hussain
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Maria Gul
- Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Muhammad Saifullah
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| | - Mohsin Ali Raza Anjum
- Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad 45650, Pakistan
| |
Collapse
|
2
|
Kinetic and Isothermal Investigations on the Use of Low Cost Coconut Fiber-Polyaniline Composites for the Removal of Chromium from Wastewater. Polymers (Basel) 2022; 14:polym14204264. [PMID: 36297844 PMCID: PMC9610989 DOI: 10.3390/polym14204264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Pollution due to various heavy metals is increasing at an alarming rate. Removal of hexavalent chromium from the environment is a significant and challenging issue due to its toxic effects on the ecosystem. Development of a low-cost adsorbent with better adsorption efficiency is presently required. In this study, waste coconut fibers (CF) were used to prepare its composite with polyaniline (PANI) via in-situ oxidation. The obtained composites with varying loading of PANI (15, 25, 50, and 75% w/w) were characterized by FE-SEM, TGA, and FTIR spectroscopy. The prepared composites were evaluated for their adsorption performance for removal of Cr(VI). It was concluded that the composite with 50% w/w polyaniline loading on coconut fiber exhibited a maximum adsorption efficiency of 93.11% in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. From the optimization studies it was observed that the absorbents exhibited the best adsorption response for Cr(VI) removal with 0.25 mg/mL adsorbent at pH 4, in 30 min. The effect of pH, dosage, and concentration of the aqueous solution of chromium on the Cr(VI) adsorption efficiency of the composite was also studied. This study highlights the application of low-cost adsorbent as a potential candidate for the removal of hexavalent chromium. A detailed study on the adsorption kinetics and isothermal analysis was conducted for the removal of Cr(VI) from aqueous solution using coconut fiber-polyaniline composite. From the kinetic investigation, the adsorption was found to follow the pseudo second order model. The data obtained were best fitted to the Elovich model confirming the chemisorption of the Cr(VI) on coconut polymer composites. The analysis of the isothermal models indicated monolayer adsorption based on the Langmuir adsorption model.
Collapse
|
3
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 101:133-64. [PMID: 22945569 PMCID: PMC4144270 DOI: 10.1007/978-3-7643-8340-4_6] [Citation(s) in RCA: 2013] [Impact Index Per Article: 223.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
4
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2012. [PMID: 22945569 DOI: 10.1007/978‐3‐7643‐8340‐4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
5
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2012. [PMID: 22945569 DOI: 10.1007/978-3-7643-8340-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
6
|
Chatterjee N, Luo Z. Cr-(III)-organic compounds treatment causes genotoxicity and changes in DNA and protein level in Saccharomyces cerevisiae. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:593-603. [PMID: 20066492 DOI: 10.1007/s10646-009-0420-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
Natural Cr-(III)-organic species are being known as the part of natural biogeochemical cycle of chromium, but unfortunately, their mechanism of toxicity as well as genotoxic potentiality is still unknown. To evaluate the characteristic toxic effect exerted by natural Cr-(III)-organic species on the cellular macromolecules, changes in DNA and protein level was observed. Besides, Comet assay was applied to measure genotoxic potentiality of Cr-(III)-organic species in the target organism Saccharomyces cerevisiae exposed to Cr-(III)-citrate and Cr-(III)-histidine. It has been observed that both of the Cr-(III)-organic compounds are responsible for diminution in macromolecules concentration. Cr-(III)-citrate showed ladder pattern of DNA fragmentation in support of apoptosis. Two new protein bands appeared in protein profile of the Saccharomyces cerevisiae treated with Cr-(III)-organic compounds. Thus it supports the possibility of the synthesis of stress proteins. Comet assay proved positive correlation between Cr-(III)-organic compounds' concentration and DNA damage. The Cr-(III)-citrate causes DNA damage at the concentrations ranging from 50 to 150 mg L(-1), whereas the DNA damaging capacity of Cr-(III)-histidine was found insignificant, except at highest concentration (150 mg L(-1)). These results can throw light on the mechanism of the toxic effect as well as genotoxicity exerted by natural Cr-(III)-organic species.
Collapse
Affiliation(s)
- Nivedita Chatterjee
- Key Laboratory of Biogeology and Environmental Geology, Ministry of Education (BGEG), School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei, 430074, China.
| | | |
Collapse
|
7
|
Pedraza-Chaverrí J, Barrera D, Medina-Campos ON, Carvajal RC, Hernández-Pando R, Macías-Ruvalcaba NA, Maldonado PD, Salcedo MI, Tapia E, Saldívar L, Castilla ME, Ibarra-Rubio ME. Time course study of oxidative and nitrosative stress and antioxidant enzymes in K2Cr2O7-induced nephrotoxicity. BMC Nephrol 2005; 6:4. [PMID: 15854231 PMCID: PMC1142323 DOI: 10.1186/1471-2369-6-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Accepted: 04/26/2005] [Indexed: 11/23/2022] Open
Abstract
Background Potassium dichromate (K2Cr2O7)-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). Methods Nephrotoxicity was induced in rats by a single injection of K2Cr2O7. Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO2 -/NO3-. Data were compared by two-way analysis of variance followed by a post hoc test. Results Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO2-/NO3- decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. Conclusion These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K2Cr2O7. Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO2-/NO3- was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration.
Collapse
Affiliation(s)
- José Pedraza-Chaverrí
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Diana Barrera
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Omar N Medina-Campos
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Raymundo C Carvajal
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Rogelio Hernández-Pando
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Departamento de Patología, 14000, México, D.F., México
| | - Norma A Macías-Ruvalcaba
- Facultad de Química, Edificio B, Laboratorio 124, Departamento de Química Orgánica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria 04510, México, D.F., México
| | - Perla D Maldonado
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Marcos I Salcedo
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Edilia Tapia
- Departamento de Nefrología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano #1, Col Sección XVI, 14080 Tlalpan, México, D.F., México
| | - Liliana Saldívar
- Facultad de Química, Edificio B, Departamento de Química Analítica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria 04510, México, D.F., México
| | - María E Castilla
- Facultad de Química, Edificio B, Departamento de Química Analítica, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria 04510, México, D.F., México
| | - María E Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| |
Collapse
|
8
|
Qi W, Reiter RJ, Tan DX, Garcia JJ, Manchester LC, Karbownik M, Calvo JR. Chromium(III)-induced 8-hydroxydeoxyguanosine in DNA and its reduction by antioxidants: comparative effects of melatonin, ascorbate, and vitamin E. ENVIRONMENTAL HEALTH PERSPECTIVES 2000; 108:399-402. [PMID: 10811565 PMCID: PMC1638051 DOI: 10.1289/ehp.00108399] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chromium compounds are well documented carcinogens. Cr(III) is more reactive than Cr(VI) toward DNA under in vitro conditions. In the present study, we investigated the ability of Cr(III) to induce oxidative DNA damage by examining the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA incubated with CrCl(3) plus H(2)O(2). We measured 8-OH-dG using HPLC with electrochemical detection. In the presence of H(2)O(2), we observed that Cr(III)-induced formation of 8-OH-dG in isolated DNA was dose and time dependent. Melatonin, ascorbate, and vitamin E (Trolox), all of which are free radical scavengers, markedly inhibited the formation of 8-OH-dG in a concentration-dependent manner. The concentration that reduced DNA damage by 50% was 0.51, 30.4, and 36.2 microM for melatonin, ascorbate, and Trolox, respectively. The results show that melatonin is 60- and 70-fold more effective than ascorbate or vitamin E, respectively, in reducing oxidative DNA damage in this in vitro model. These findings also are consistent with the conclusion that the carcinogenic mechanism of Cr(III) is possibly due to Cr(III)-mediated Fenton-type reactions and that melatonin's highly protective effects against Cr(III) relate, at least in part, to its direct hydroxyl radical scavenging ability.
Collapse
Affiliation(s)
- W Qi
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
OBJECTIVES To estimate the risk of gastrointestinal cancer and lung cancer in a cohort of masons exposed to cement and hexavalent chromium by a follow up in the Icelandic Cancer Registry. METHODS The cohort, 1172 men, was defined as those who had served their apprenticeship and were fully licensed as masons (cement finishers) in Iceland, were born after 1880 and were alive in 1955. The men were exposed to an aerosol of wet concrete, particularly when spraying. According to the analyses of urinary chromium the masons were exposed to hexavalent chromium. A computer file on masons was record linked to the Cancer Registry by making use of the personal identification numbers. Expected cancer incidence was calculated on the basis of number of person-years for each five-year age category during the individual calendar years of the study period and multiplied by the specific incidence for cause and calendar year for men in Iceland provided by the Cancer Registry. RESULTS The standardised incidence ratio (SIR) for all cancers was 1.13 in the total cohort and 1.33 when allowance was made for 30 years to elapse before starting to count person years of risk. The risk for gastrointestinal cancers was not increased. The SIR for lung cancer was 1.69 in the total cohort and 1.77 when a lag of 30 years was included. The SIR for lung cancer among those born in 1920 or later was 1.86. Results from a postal questionnaire showed that fewer masons had never smoked and more masons had stopped smoking than the controls from the general population. CONCLUSION The increased risk of lung cancer among the masons may be related to their work. The exposure information, although limited, supports the suggestion that hexavalent chromium in the cement may be the causal link, as information on the smoking habits indicate that the control for this important possible confounder is adequate.
Collapse
Affiliation(s)
- V Rafnsson
- Department of Occupational Medicine, Administration of Occupational Safety and Health, Reykjavik, Iceland
| | | | | |
Collapse
|
10
|
Gao M, Levy LS, Faux SP, Aw TC, Braithwaite RA, Brown SS. Use of molecular epidemiological techniques in a pilot study on workers exposed to chromium. Occup Environ Med 1994; 51:663-8. [PMID: 8000490 PMCID: PMC1128074 DOI: 10.1136/oem.51.10.663] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Molecular epidemiological techniques, capable of detecting damage to DNA, were used to see if such damage occurred in the lymphocytes of a group of workers exposed to chromium. The two aims of this pilot study were to see if these new techniques might make useful biological monitoring tools for workers exposed to chromium and also, to help assess whether the current occupational exposure limit for chromium (VI) was sufficiently protective in this specific working situation. METHODS Volunteer groups of 10 workers exposed to chromium and 10 non-exposed workers provided urine and blood samples towards the end of the working week. Chromium concentrations were measured in whole blood, plasma, lymphocytes, and urine. Lymphocytes were used to examine two forms of DNA damage in the two groups; these were the level of DNA strand breakage and, the production of 8-hydroxydeoxyguanosine. RESULTS Chromium concentration in whole blood, plasma, and urine of workers exposed to chromium was significantly raised (P < 0.01) compared with non-exposed controls, but in isolated lymphocytes, there was only a modest but significant (P < 0.05) increase in chromium in the group exposed to chromium. There was no difference in the levels of DNA strand breaks or 8-hydroxydeoxyguanosine between the groups. Air monitoring for chromium was not undertaken but current levels for the group exposed to chromium were reported to be around 0.01 mg/m3, which is 20% of the current United Kingdom occupational exposure limit. CONCLUSIONS We were unable to detect any damage in lymphocytic DNA due to exposure to chromium. This may have been due to the low chromium exposure (< 20% of the United Kingdom occupational exposure limit), the ability of plasma to detoxify chromium (VI) to chromium (III) before it reached the lymphocytes, or perhaps the insensitivity of the molecular techniques used. It is now important to test these and other such techniques on groups exposed to levels closer to the United Kingdom occupational exposure limit.
Collapse
Affiliation(s)
- M Gao
- Institute of Occupational Health, University of Birmingham, Edgbaston
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Chromium was discovered in 1797 by Vauquelin. Numerous industrial applications raised chromium to a very important economic element. At the same time, with the development of its uses, the adverse effects of chromium compounds in human health were being defined. Trivalent chromium is an essential trace element in humans and in animals. Chromium as pure metal has no adverse effect. Little toxic effect is attributed to trivalent chromium when present in very large quantities. Both acute and chronic toxicity of chromium are mainly caused by hexavalent compounds. The most important toxic effects, after contact, inhalation, or ingestion of hexavalent chromium compounds are the following: dermatitis, allergic and eczematous skin reactions, skin and mucous membrane ulcerations, perforation of the nasal septum, allergic asthmatic reactions, bronchial carcinomas, gastro-enteritis, hepatocellular deficiency, and renal oligo anuric deficiency. Prevention of occupational risks, biological monitoring of workers, and treatment of poisoning are also reported.
Collapse
|
12
|
Magos L. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species. ENVIRONMENTAL HEALTH PERSPECTIVES 1991; 95:157-89. [PMID: 1821370 PMCID: PMC1568407 DOI: 10.1289/ehp.9195157] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The carcinogenic properties of selected metals and their compounds are reviewed to provide a useful reference for existing knowledge on relationships between physical and chemical forms, kinetics and carcinogenic potential and between epidemiology, bioassays, and short-term tests. Extensive consideration is given to arsenic, beryllium, cadmium, chromium, lead, and nickel. Other metals such as antimony, cobalt, copper, iron, manganese, selenium, and zinc are discussed briefly.
Collapse
Affiliation(s)
- L Magos
- MRC Toxicology Unit, Carshalton, Surrey, UK
| |
Collapse
|
13
|
Abstract
The essentiality and carcinogenicity of chromium depend on its chemical form. Oxidation state and solubility are particularly important in determining the biological effects of chromium compounds. For this reason, total chromium measurements are of little value in assessing its nutritional benefits or its toxicological hazards. Aqueous sodium carbonate-sodium hydroxide solutions have been successfully used for extracting hexavalent chromium from a variety of environmental and biological matrices while preserving its oxidation state. Typical recoveries are 90 to 105% in samples spiked with both trivalent and hexavalent chromium. Determination of hexavalent chromium after extraction with sodium carbonate-sodium hydroxide solution, coupled with the determination of total chromium after nitric acid-hydrogen peroxide digestion, has been applied to the evaluation of chromium speciation in airborne particulates, sludges, and biological tissues.
Collapse
Affiliation(s)
- S A Katz
- Department of Chemistry, Rutgers University, Camden, NJ 08102
| |
Collapse
|