1
|
Grisold W, Carozzi VA. Toxicity in Peripheral Nerves: An Overview. TOXICS 2021; 9:toxics9090218. [PMID: 34564369 PMCID: PMC8472820 DOI: 10.3390/toxics9090218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Introduction to a collection. This article is intended to introduce a collection of papers on toxic neuropathies. Toxic neuropathies can be caused by a variety of substances and by different mechanisms. Toxic agents are numerous and can be distinguished between drugs, recreational agents, heavy metals, industrial agents, pesticides, warfare agents, biologic substances and venoms. Toxic agents reach the nervous system by ingestion, transcutaneously, via the mucous membranes, parenterally and by aerosols. The most frequent types are cumulative toxicities. Other types are acute or delayed toxicities. Pathogenetic mechanisms range from a specific toxic substance profile causing axonal or demyelinating lesions, towards ion channel interferences, immune-mediated mechanisms and a number of different molecular pathways. In addition, demyelination, focal lesions and small fiber damage may occur. Clinically, neurotoxicity presents most frequently as axonal symmetric neuropathies. In this work, we present a panoramic view of toxic neuropathy, in terms of symptoms, causes, mechanisms and classification.
Collapse
Affiliation(s)
- Wolfgang Grisold
- Ludwig Boltzmann Institute for Experimental und Clinical Traumatology, Donaueschingenstraße 13, A-1200 Wien, Austria;
| | - Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milan Bicocca, Building U8, Room 1027, Via Cadore 48, 20900 Monza, Italy
- Correspondence:
| |
Collapse
|
2
|
Spencer PS. Neuroprotein Targets of γ-Diketone Metabolites of Aliphatic and Aromatic Solvents That Induce Central-Peripheral Axonopathy. Toxicol Pathol 2020; 48:411-421. [PMID: 32162603 DOI: 10.1177/0192623320910960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral neuropathy associated with chronic occupational and deliberate overexposure to neurotoxic organic solvents results from axonal degeneration in the central and peripheral nervous system. Human and experimental studies show that axonopathy is triggered by the action of neuroprotein-reactive γ-diketone metabolites formed from exposure to certain aliphatic solvents (n-hexane, 2-hexanone) and aromatic compounds (1,2-diethylbenzene, 1,2-4-triethylbenzene, 6-acetyl-1,1,4,4-tetramethyl-7-ethyl-1,2,3,4-tetralin). Neuroprotein susceptibility is related primarily to their differential content of lysine, the ∊-amino group of which is targeted by γ-diketones. Specific neuroprotein targets have been identified, and the sequence of molecular mechanisms leading to axonal pathology has been illuminated. While occupational n-hexane neuropathy continues to be reported, lessons learned from its experimental study may have relevance to other causes of peripheral neuropathy, including those associated with aging and diabetes mellitus.
Collapse
Affiliation(s)
- Peter S Spencer
- Oregon Institute of Occupational Health Sciences and Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
4
|
Bates MN, Pope K, So YT, Liu S, Eisen EA, Hammond SK. Hexane exposure and persistent peripheral neuropathy in automotive technicians. Neurotoxicology 2019; 75:24-29. [PMID: 31445054 DOI: 10.1016/j.neuro.2019.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
Abstract
Automotive technicians are commonly exposed to organic and chlorinated solvents, particularly through use of cleaning products. Mainly during the period 1989-2002, n-hexane was a component of some of these products. In other occupational contexts, n-hexane has been shown to be a cause of peripheral neuropathy. The purpose of the present study was to investigate whether previous exposures to low concentrations of n-hexane were a cause of persistent peripheral neuropathy in automotive technicians. Enrolled in the study were 830 San Francisco Bay Area automotive technicians. Each participant underwent a battery of tests to investigate peripheral nervous system impairment. Test results regressed against estimated hexane and total solvent exposures showed only limited evidence of association with solvent exposures. Exposures to both hexane and general solvents were well below their occupational exposure limits. Generally, our results provide reassurance about persistent peripheral neuropathic effects in automotive technicians who previously used hexane-containing automotive cleaning products. This may reflect repair processes, since the exposures occurred some years previous to the study. However, we cannot exclude the possibility that the absence of observed effect in this study may be attributable to low exposures, exposure misclassification and/or the healthy worker survivor effect.
Collapse
Affiliation(s)
- Michael N Bates
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Karl Pope
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuen T So
- Department of Neurology, Stanford University, Palo Alto, CA 94305, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA; School of Health Sciences, Purdue University, West Lafayette, IN 47904, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Wang Z, Qiu Z, Gao C, Sun Y, Dong W, Zhang Y, Chen R, Qi Y, Li S, Guo Y, Piao Y, Li S, Piao F. 2,5-hexanedione downregulates nerve growth factor and induces neuron apoptosis in the spinal cord of rats via inhibition of the PI3K/Akt signaling pathway. PLoS One 2017; 12:e0179388. [PMID: 28654704 PMCID: PMC5487034 DOI: 10.1371/journal.pone.0179388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 05/27/2017] [Indexed: 11/19/2022] Open
Abstract
2,5-hexanedione (2,5-HD) is the main active metabolite of n-hexane and induces apoptosis in nerve tissue, however, the mechanism of which remains unclear. In the present study, neuropathic animal models were successfully constructed in rats by injecting 100, 200 and 400 mg/kg 2,5-HD intraperitoneally for 5 weeks. Rats exposed to 2,5-HD exhibited progressive gait abnormalities and slower motor neural response in a dose-dependent manner. TUNEL analysis and immunofluorescence dual labeling revealed that the spinal cord of the 2,5-HD treated rats underwent significantly more apoptosis in the cells of spinal cord than that of the control group. The neuron apoptosis index in spinal cord was 4.1%, 6.7%, 9.8% respectively in rats exposed to 100, 200 and 400 mg/kg 2,5-HD, compared with 1.1% in the control group (p < 0.05). Biochemical analysis showed that 2,5-HD exposure downregulated NGF expression in the spinal cord of the intoxicated rats; inhibited the phosphorylation of Akt and Bad, two key players in PI3K/Akt pathway downstream of NGF; increased the dimerization of Bad with Bcl-xL in the mitochondrial fraction, followed by the release of cytochrome c and activation of caspase-3 in the spinal cord of rats. In vitro study showed that the NGF expression decreased significantly in VSC4.1 cells dosed with 5.0, 10.0 mM 2,5-HD in comparison with the control group. It was also found that NGF supplement repressed the induced apoptosis, and increased p-Akt and p-Bad level in 2,5-HD treated VSC4.1 cells, which could be antagonized by PI3K kinase (the upstream member of Akt) inhibitor LY294002. Taken together, our experimental results indicate that 2,5-HD may induce apoptosis in the spinal cord of rats via downregulating NGF expression and subsequently repressing PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhemin Wang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Zewen Qiu
- Laboratory Animal center, Dalian Medical University, Dalian, Liaoning, China
| | - Chenxue Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yijie Sun
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Wei Dong
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Ruolin Chen
- Department of Sexually Transmitted Disease, Heping Center for Disease Control and Prevention of Tianjin, Tianjin, China
| | - Yuan Qi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yanjie Guo
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, China
| | - Yongjun Piao
- Department of Dermatology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Sheng Li
- Department of Biochemistry, Dalian Medical University, Dalian, Liaoning, China
- * E-mail: (FP); (SL)
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
- * E-mail: (FP); (SL)
| |
Collapse
|
6
|
Beckman S, Eisen EA, Bates MN, Liu S, Haegerstrom-Portnoy G, Hammond SK. Acquired Color Vision Defects and Hexane Exposure: A Study of San Francisco Bay Area Automotive Mechanics. Am J Epidemiol 2016; 183:969-76. [PMID: 27188942 DOI: 10.1093/aje/kwv328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/18/2015] [Indexed: 11/13/2022] Open
Abstract
Occupational exposure to solvents, including n-hexane, has been associated with acquired color vision defects. Blue-yellow defects are most common and may be due to neurotoxicity or retinal damage. Acetone may potentiate the neurotoxicity of n-hexane. We present results on nonhexane solvent and hexane exposure and color vision from a cross-sectional study of 835 automotive repair workers in the San Francisco Bay Area, California (2007-2013). Cumulative exposure was estimated from self-reported work history, and color vision was assessed using the Lanthony desaturated D-15 panel test. Log-binomial regression was used to estimate prevalence ratios for color vision defects. Acquired color vision defects were present in 29% of participants, of which 70% were blue-yellow. Elevated prevalence ratios were found for nonhexane solvent exposure, with a maximum of 1.31 (95% confidence interval (CI): 0.86, 2.00) for blue-yellow. Among participants aged ≤50 years, the prevalence ratio for blue-yellow defects was 2.17 (95% CI: 1.03, 4.56) in the highest quartile of nonhexane solvent exposure and 1.62 (95% CI: 0.97, 2.72) in the highest category of exposure to hexane with acetone coexposure. Cumulative exposures to hexane and nonhexane solvents in the highest exposure categories were associated with elevated prevalence ratios for color vision defects in younger participants.
Collapse
|
7
|
Occupational neurotoxic diseases in taiwan. Saf Health Work 2012; 3:257-67. [PMID: 23251841 PMCID: PMC3521924 DOI: 10.5491/shaw.2012.3.4.257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022] Open
Abstract
Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization.
Collapse
|
8
|
Fang F, Quinlan P, Ye W, Barber MK, Umbach DM, Sandler DP, Kamel F. Workplace exposures and the risk of amyotrophic lateral sclerosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1387-92. [PMID: 19750102 PMCID: PMC2737014 DOI: 10.1289/ehp.0900580] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/11/2009] [Indexed: 05/11/2023]
Abstract
BACKGROUND Occupation has been suggested to play a role in amyotrophic lateral sclerosis (ALS) etiology, but detailed information on the importance of specific workplace exposures is lacking. OBJECTIVES Our aim was to assess the relationship between workplace exposures and the risk of ALS and to evaluate potential interactions between these exposures and smoking. METHODS We conducted a case-control study in New England between 1993 and 1996, comprising 109 cases and 253 controls who completed a structured interview covering occupations and workplace exposures. Unconditional logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for ALS. Analyses were conducted among the entire study population and after stratification by smoking. RESULTS We observed a higher risk of ALS for construction workers excluding supervisors (OR = 2.9; 95% CI, 1.2-7.2) and precision metal workers (OR = 3.5; 95% CI, 1.2-10.5). Self-reported exposures to paint strippers; cutting, cooling, or lubricating oils; antifreeze or coolants; mineral or white spirits; and dry cleaning agents each appeared to be associated with a 60-90% higher risk. Specific chemicals related to a > 50% increase in risk of ALS included aliphatic chlorinated hydrocarbons, glycols, glycol ethers, and hexane. Relative risks associated with these workplace exposures and chemicals were greater among nonsmokers and persisted in mutually adjusted models. CONCLUSIONS Our data suggest that certain occupations and workplace exposures may be associated with increased risk of ALS. These results need to be confirmed in independent populations.
Collapse
Affiliation(s)
- Fang Fang
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Patricia Quinlan
- Department of Medicine, Division of Occupational and Environmental Medicine, University of California, San Francisco, California, USA
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - David M. Umbach
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Address correspondence to F. Kamel, Epidemiology Branch, National Institute of Environmental Health Sciences, P.O. Box 12233, Mail Drop A3-05, Research Triangle Park, NC 27709 USA. Telephone: (919) 541-1581. Fax: (919) 541-2511. E-mail:
| |
Collapse
|
9
|
Chang CM, Yu CW, Fong KY, Leung SY, Tsin TW, Yu YL, Cheung TF, Chan SY. N-hexane neuropathy in offset printers. J Neurol Neurosurg Psychiatry 1993; 56:538-42. [PMID: 8505647 PMCID: PMC1015015 DOI: 10.1136/jnnp.56.5.538] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In an offset printing factory with 56 workers, 20 (36%) developed symptomatic peripheral neuropathy due to exposure to n-hexane. Another 26 workers (46%) were found to have subclinical neuropathy. The initial change in the nerve conduction study was reduced amplitude of the sensory action potentials, followed by reduced amplitude of the motor action potentials, reduction in motor conduction velocities and increase in distal latencies. These changes indicate primary axonal degeneration with secondary demyelination. Sural nerve biopsy in a severe case showed giant axonal swellings due to accumulation of 10nm neurofilaments, myelin sheath attenuation and widening of nodal gaps. The development of neuropathy bore no direct relationship to the duration of exposure, hence factors such as individual susceptibility may be important. Optic neuropathy and CNS involvement were uncommon and autonomic neuropathy was not encountered.
Collapse
Affiliation(s)
- C M Chang
- Department of Medicine, University of Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|