1
|
Olsen A, Locascio J, Tuncali I, Laroussi N, Abatzis E, Kamenskaya P, Kuras Y, Yi T, Videnovic A, Hayes M, Ho G, Paulson J, Khurana V, Herrington T, Hyman B, Selkoe D, Growdon J, Gomperts S, Riise T, Schwarzschild M, Hung A, Wills A, Scherzer C. Health phenome of Parkinson's patients reveals prominent mood-sleep cluster. RESEARCH SQUARE 2023:rs.3.rs-3683455. [PMID: 38196602 PMCID: PMC10775372 DOI: 10.21203/rs.3.rs-3683455/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Associations between phenotypic traits, environmental exposures, and Parkinson's disease have largely been evaluated one-by-one, piecemeal, and pre-selections. A comprehensive picture of comorbidities, phenotypes, exposures, and polypharmacy characterizing the complexity and heterogeneity of real-world patients presenting to academic movement disorders clinics in the US is missing. Objectives To portrait the complexity of features associated with patients with Parkinson's disease in a study of 933 cases and 291 controls enrolled in the Harvard Biomarkers Study. Methods The primary analysis evaluated 64 health features for associations with Parkinson's using logistic regression adjusting for age and sex. We adjusted for multiple testing using the false discovery rate (FDR) with £ 0.05 indicating statistical significance. Exploratory analyses examined feature correlation clusters and feature combinations. Results Depression (OR = 3.11, 95% CI 2.1 to 4.71), anxiety (OR = 3.31, 95% CI 2.01-5.75), sleep apnea (OR 2.58, 95% CI 1.47-4.92), and restless leg syndrome (RLS; OR 4.12, 95% CI 1.81-12.1) were significantly more common in patients with Parkinson's than in controls adjusting for age and sex with FDR £ 0.05. The prevalence of depression, anxiety, sleep apnea, and RLS were correlated, and these diseases formed part of a larger cluster of mood traits and sleep traits linked to PD. Exposures to pesticides (OR 1.87, 95% CI 1.37-2.6), head trauma (OR 2.33, 95% CI 1.51-3.73), and smoking (OR 0.57, 95% CI 0.43-0.75) were significantly associated with the disease consistent with previous studies. Vitamin supplementation with cholecalciferol (OR 2.18, 95% CI 1.4-3.45) and coenzyme Q10 (OR 2.98, 95% CI 1.89-4.92) was more commonly used by patients than controls. Cumulatively, 43% (398 of 933) of Parkinson's patients had at least one psychiatric or sleep disorder, compared to 21% (60 of 291) of healthy controls. Conclusions 43% of Parkinson's patients seen at Harvard-affiliated teaching hospitals have depression, anxiety, and disordered sleep. This syndromic cluster of mood and sleep traits may be pathophysiologically linked and clinically important.
Collapse
Affiliation(s)
| | - Joseph Locascio
- Center for Advanced Parkinson Research, Harvard Medical School, Brigham & Women's Hospital
| | | | | | | | | | | | - Tom Yi
- Brigham and Women's Hospital
| | | | | | - Gary Ho
- Brigham and Women's Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Vasilevskaya A, Martinez-Valbuena I, Anastassiadis C, Taghdiri F, Khodadadi M, Tarazi A, Green R, Colella B, Wennberg R, Mikulis D, Davis KD, Kovacs GG, Tator C, Tartaglia MC. Misfolded α-Synuclein in Cerebrospinal Fluid of Contact Sport Athletes. Mov Disord 2023; 38:2125-2131. [PMID: 37792643 DOI: 10.1002/mds.29621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Misfolded α-synuclein in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) can be detected using the real-time quaking-induced conversion (RT-QuIC) technique in cerebrospinal fluid (CSF). OBJECTIVES The objectives are (1) to examine misfolded CSF α-synuclein incidence, and (2) to compare clinical presentation, sports history, brain volumes, and RT-QuIC α-synuclein positivity in former athletes. METHODS Thirty former athletes with magnetic resonance imaging, neuropsychological testing, and CSF analyzed for phosphorylated tau 181 (p-tau), total tau (t-tau), amyloid-β 42 (Aβ42), and neurofilament light chain (NfL). CSF α-synuclein was detected using RT-QuIC. RESULTS Six (20%) former athletes were α-synuclein positive. α-Synuclein positive athletes were similar to α-synuclein negative athletes on demographics, sports history, clinical features, CSF p-tau, t-tau, Aβ42, and NfL; however, had lower grey matter volumes in the right inferior orbitofrontal, right anterior insula and right olfactory cortices. CONCLUSIONS α-Synuclein RT-QuIC analysis of CSF may be useful as a prodromal biofluid marker of PD and DLB. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ivan Martinez-Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Mozhgan Khodadadi
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - Robin Green
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
- KITE Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Brenda Colella
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
- KITE Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Karen Deborah Davis
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Brain, Imaging, and Behaviour; Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Moon D. Disorders of Movement due to Acquired and Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 10:311-323. [PMID: 36164499 PMCID: PMC9493170 DOI: 10.1007/s40141-022-00368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Purpose of Review Both traumatic and acquired brain injury can result in diffuse multifocal injury affecting both the pyramidal and extrapyramidal tracts. Thus, these patients may exhibit signs of both upper motor neuron syndrome and movement disorder simultaneously which can further complicate diagnosis and management. We will be discussing movement disorders following acquired and traumatic brain injury. Recent Findings Multiple functions including speech, swallowing, posture, mobility, and activities of daily living can all be affected. Medical treatment and rehabilitation-based therapy can be especially challenging due to accompanying cognitive deficits and severity of the disorder which can involve multiple limbs in addition to muscles of the face and axial skeleton. Tremor and dystonia are the most reported movement disorders following traumatic brain injury. Dystonia and myoclonus are well documented following hypoxic ischemic brain injuries. Electrophysiological studies such as dynamic surface poly-electromyography can assist with identifying phenomenology, especially differentiating between jerk-like phenomenon and help guide further work up and management. Management with medications remains challenging due to potential adverse effects. Surgical interventions including stereotactic surgery, deep brain stimulation, and intrathecal baclofen pumps have been reported, but most of the evidence supporting them has been limited to primarily case reports except for post-traumatic tremor. Summary Brain injury can lead to motor disorders, movement disorders, visual (processing) deficits, and vestibular deficits which often coexist with cognitive deficits making it challenging to treat and rehabilitate these patients. Unfortunately, the evidence regarding the medical management and rehabilitation of brain injury patients with movement disorders is sparse and leaves much to be desired.
Collapse
Affiliation(s)
- Daniel Moon
- grid.421874.c0000 0001 0016 6543Moss Rehabilitation Hospital, Elkins Park, PA USA
| |
Collapse
|
4
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
5
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
6
|
Tellone E, Galtieri A, Russo A, Ficarra S. Protective Effects of the Caffeine Against Neurodegenerative Diseases. Curr Med Chem 2019; 26:5137-5151. [DOI: 10.2174/0929867324666171009104040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022]
Abstract
Background:
Recent studies and increased interest of the scientific community helped to
clarify the neurological health property of caffeine, one of the pharmacologically active substances
most consumed in the world.
Methods:
This article is a review search to provide an overview on the current state of understanding
neurobiochemical impact of caffeine, focusing on the ability of the drug to effectively counteract several
neurodegenerative disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, Multiple
sclerosis and Amyotrophic lateral sclerosis.
Results:
Data collection shown in this review provide a significant therapeutic and prophylactic potentiality
of caffeine which acts on human brain through several pathways because of its antioxidant activity
combined with multiple molecular targets. However, the need to adjust the CF dosage to individuals,
because some people are more sensitive to drugs than others, may constituted a limit to the CF effectiveness.
Conclusion:
What emerges from the complex of clinical and epidemiological studies is a significant CF
potential impact against all neurological disorders. Although, further studies are needed to fully elucidate
the several mechanisms of drug action which in part are still elusive.
Collapse
Affiliation(s)
- Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonio Galtieri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V. le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Raikes AC, Killgore WDS. Potential for the development of light therapies in mild traumatic brain injury. Concussion 2018; 3:CNC57. [PMID: 30370058 PMCID: PMC6199671 DOI: 10.2217/cnc-2018-0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Light affects almost all aspects of human physiological functioning, including circadian rhythms, sleep-wake regulation, alertness, cognition and mood. We review the existing relevant literature on the effects of various wavelengths of light on these major domains, particularly as they pertain to recovery from mild traumatic brain injuries. Evidence suggests that light, particularly in the blue wavelengths, has powerful alerting, cognitive and circadian phase shifting properties that could be useful for treatment. Other wavelengths, such as red and green may also have important effects that, if targeted appropriately, might also be useful for facilitating recovery. Despite the known effects of light, more research is needed. We recommend a personalized medicine approach to the use of light therapy as an adjunctive treatment for patients recovering from mild traumatic brain injury.
Collapse
Affiliation(s)
- Adam C Raikes
- Social, Cognitive & Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- ORCID: 0000-0002-1609-6727
| | - William DS Killgore
- Social, Cognitive & Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
- ORCID: 0000-0002-5328-0208
| |
Collapse
|
8
|
Raikes AC, Schaefer SY, Studenka BE. Concussion history is negatively associated with visual-motor force complexity: evidence for persistent effects on visual-motor integration. Brain Inj 2018; 32:747-754. [PMID: 29485290 DOI: 10.1080/02699052.2018.1444204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES Long-term monitoring of concussion recovery requires time- and cost-effective methods. Physiologic complexity may be useful in evaluating visual-motor integration following concussion. The purpose of this study was to quantify the extent to which prior number of concussions influenced visual-motor tracking force complexity. METHODS Thirty-five individuals with a self-reported concussion history (age: 20.92 ± 1.98) and 15 without (age: 20.92 ± 2.21) performed an isometric visual-motor tracking task, using index finger force to trace a straight line across a computer screen. Finger force root mean square error (RMSE), multi-scale complexity, and average power from 0 to 12 Hertz (Hz) were calculated. Individual multiple regressions were fit to these outcomes. RESULTS Force complexity decreased linearly with an increasing number of concussions (R2 = 0.101). Males had more complex force overall (R2 = 0.219) and greater 4-8 Hz average power (R2 = 0.193). The 8-12 Hz average power decreased significantly for individuals with prior loss of consciousness (LOC) and increasing numbers of concussions (R2 = 0.143). CONCLUSION Individuals exhibited linear decreases in visual-motor tracking force complexity with increasing numbers of concussions, influenced by both gender and a history of LOC. These findings indicate cumulative changes in the ways in which previously concussed individuals process and integrate visual information to guide behaviour.
Collapse
Affiliation(s)
- Adam C Raikes
- a Social, Cognitive, and Affective Neuroscience Lab , The University of Arizona , Tucson , AZ , USA.,b Kinesiology and Health Science , Utah State University , Logan , UT , USA
| | - Sydney Y Schaefer
- c School of Biological and Health Engineering , Arizona State University , Tempe , AZ , USA
| | - Breanna E Studenka
- b Kinesiology and Health Science , Utah State University , Logan , UT , USA
| |
Collapse
|
9
|
|
10
|
Gallo V, McElvenny D, Hobbs C, Davoren D, Morris H, Crutch S, Zetterberg H, Fox NC, Kemp S, Cross M, Arden NK, Davies MAM, Malaspina A, Pearce N. BRain health and healthy AgeINg in retired rugby union players, the BRAIN Study: study protocol for an observational study in the UK. BMJ Open 2017; 7:e017990. [PMID: 29282262 PMCID: PMC5770902 DOI: 10.1136/bmjopen-2017-017990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Relatively little is known about the long-term health of former elite rugby players, or former sportspeople more generally. As well as the potential benefits of being former elite sportspersons, there may be potential health risks from exposures occurring during an individual's playing career, as well as following retirement. Each contact sport has vastly different playing dynamics, therefore exposing its players to different types of potential traumas. Current evidence suggests that these are not necessarily comparable in terms of pathophysiology, and their potential long-term adverse effects might also differ. There is currently limited but increasing evidence that poorer age-related and neurological health exists among former professional sportsmen exposed to repetitive concussions; however the evidence is limited on rugby union players, specifically. METHODS AND ANALYSIS We present the protocol for a cross-sectional study to assess the association between self-reported history of concussion during a playing career, and subsequent measures of healthy ageing and neurological and cognitive impairment. We are recruiting a sample of approximately 200 retired rugby players (former Oxford and Cambridge University rugby players and members of the England Rugby International Club) aged 50 years or more, and collecting a number of general and neurological health-related outcome measures though validated assessments. Biomarkers of neurodegeneration (neurofilaments and tau) will be also be measured. Although the study is focusing on rugby union players specifically, the general study design and the methods for assessing neurological health are likely to be relevant to other studies of former elite sportspersons. ETHICS AND DISSEMINATION The study has been approved by the Ethical Committee of London School of Hygiene and Tropical Medicine (reference: 11634-2). It is intended that results of this study will be published in peer-reviewed medical journals, communicated to participants, the general public and all relevant stakeholders.
Collapse
Affiliation(s)
- Valentina Gallo
- School of Public Health, Imperial College London, London, UK
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Primary Care and Public Health, Queen Mary, University of London, London, UK
| | - Damien McElvenny
- Research Division, Institute of Occupational Medicine, Edinburgh, UK
| | - Catherine Hobbs
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Donna Davoren
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Huw Morris
- Department of Clinical Neuroscience, University College London, London, UK
| | - Sebastian Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of molecular neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | | | | | - Nigel K Arden
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Madeleine A M Davies
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Andrea Malaspina
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary, University of London, London, UK
| | - Neil Pearce
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
11
|
Chen CY, Hung HJ, Chang KH, Hsu CY, Muo CH, Tsai CH, Wu TN. Long-term exposure to air pollution and the incidence of Parkinson's disease: A nested case-control study. PLoS One 2017; 12:e0182834. [PMID: 28809934 PMCID: PMC5557354 DOI: 10.1371/journal.pone.0182834] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies revealed that chronic exposure to air pollution can significantly increase the risk of the development of Parkinson's disease (PD), but this relationship is inconclusive as large-scale prospective studies are limited and the results are inconsistent. Therefore, the purpose of this study was to ascertain the adverse health effects of air pollution exposure in a nationwide population using a longitudinal approach. MATERIALS AND METHODS We conducted a nested case-control study using the National Health Insurance Research Dataset (NHIRD), which consisted of 1,000,000 beneficiaries in the National Health Insurance Program (NHI) in the year 2000 and their medical records from 1995 to 2013 and using public data on air pollution concentrations from monitoring stations across Taiwan released from the Environmental Protection Administration to identify people with ages ≥ 40 years living in areas with monitoring stations during 1995-1999 as study subjects. Then, we excluded subjects with PD, dementia, stroke and diabetes diagnosed before Jan. 1, 2000 and obtained 54,524 subjects to follow until Dec. 31, 2013. In this observational period, 1060 newly diagnosed PD cases were identified. 4240 controls were randomly selected from those without PD using a matching strategy for age, sex, the year of PD diagnosis and the year of entering the NHI program at a ratio of 1:4. Ten elements of air pollution were examined, and multiple logistic regression models were used to measure their risks in subsequent PD development. RESULTS The incidence of PD in adults aged ≥ 40 years was 1.9%, and the median duration for disease onset was 8.45 years. None of the chemical compounds (SO2, O3, CO, NOx, NO, NO2, THC, CH4, or NMHC) significantly affected the incidence of PD except for particulate matter. PM10 exposure showed significant effects on the likelihood of PD development (T3 level: > 65μg/m3 versus T1 level: ≤ 54μg/m3; OR = 1.35, 95% CI = 1.12-1.62, 0.001 ≤ P < 0.01). In addition, comorbid conditions such as dementia (ORs = 3.53-3.93, Ps < 0.001), stroke (ORs = 2.99-3.01, Ps < 0.001), depression (ORs = 2.51-2.64, Ps < 0.001), head injury (ORs = 1.24-1.29, 0.001 ≤ Ps < 0.01 or 0.01 ≤ Ps < 0.05), sleep disorder (OR = 1.23-1.26, 0.001 ≤ Ps < 0.01), and hypertension (ORs = 1.18-1.19, 0.01 ≤ Ps < 0.05) also significantly increased the risk for PD development. CONCLUSIONS Although PM10 plays a significant role in PD development, the associated chemical/metal compounds that are capable of inducing adverse biological mechanisms still warrant further exploration. Because of a link between comorbid conditions and PM exposure, research on the causal relationship between long-term exposure to PM and the development of PD should be considered with caution because other possible modifiers or mediators, comorbid diseases in particular, may be involved.
Collapse
Affiliation(s)
- Chiu-Ying Chen
- Department of Public Health, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Jung Hung
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Kuang-Hsi Chang
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Chon-Haw Tsai
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Trong-Neng Wu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| |
Collapse
|
12
|
Nicoletti A, Vasta R, Mostile G, Nicoletti G, Arabia G, Iliceto G, Lamberti P, Marconi R, Morgante L, Barone P, Quattrone A, Zappia M. Head trauma and Parkinson's disease: results from an Italian case-control study. Neurol Sci 2017; 38:1835-1839. [PMID: 28748275 DOI: 10.1007/s10072-017-3076-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/16/2017] [Indexed: 11/26/2022]
Abstract
We evaluated the possible association between head trauma and Parkinson's disease (PD). The FRAGAMP (Fattori di Rischio Ambientali e Genetici Associati alla Malattia di Parkinson) study is a large Italian multicenter case-control study carried out to evaluate the possible role of environmental and genetic factors in PD. Cases and controls were enrolled from six movement disorders centers located in the Central-Southern Italy. A standardized questionnaire was administered to record demographic, epidemiological, and clinical data. Positive history of head trauma was considered only if the head trauma preceded the onset of PD. All cases and controls underwent a standard neurological examination. Adjusted ORs and 95% CI were estimated using multivariate analysis (logistic regression). Four hundred ninety-two PD patients (292 men and 200 women) and 459 controls (160 men and 299 women) were enrolled in the study. A positive history for head trauma was reported by 106 (21.5%) PD patients and by 62 (13.5%) healthy controls. Multivariate analysis (OR adjusted by age, sex, family history, coffee smoking, and alcohol consumption) showed a significant positive association between PD and head trauma with an adjusted OR of 1.50 (95%CI 1.04-2.17; p value 0.03). In agreement with literature data, our study supports the positive association between head trauma and PD.
Collapse
Affiliation(s)
- Alessandra Nicoletti
- Dipartimento G.F. Ingrassia, Sezione di Neuroscienze, Università Degli Studi di Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Rosario Vasta
- Dipartimento G.F. Ingrassia, Sezione di Neuroscienze, Università Degli Studi di Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giovanni Mostile
- Dipartimento G.F. Ingrassia, Sezione di Neuroscienze, Università Degli Studi di Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Nicoletti
- Istituto di Bioimmagini e Fisiologia Molecolare - Consiglio Nazionale delle Ricerche, Catanzaro, Italy
| | - Gennarina Arabia
- Clinica Neurologica, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Giovanni Iliceto
- Dipartimento di Scienze mediche di base, neuroscienze e organi di senso, Università di Bari, Bari, Italy
| | - Paolo Lamberti
- Dipartimento di Scienze mediche di base, neuroscienze e organi di senso, Università di Bari, Bari, Italy
| | - Roberto Marconi
- Divisione di Neurologia, Ospedale Misericordia, Grosseto, Italy
| | | | - Paolo Barone
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Salerno, Italy
| | - Aldo Quattrone
- Istituto di Bioimmagini e Fisiologia Molecolare - Consiglio Nazionale delle Ricerche, Catanzaro, Italy
- Clinica Neurologica, Università "Magna Græcia" di Catanzaro, Catanzaro, Italy
| | - Mario Zappia
- Dipartimento G.F. Ingrassia, Sezione di Neuroscienze, Università Degli Studi di Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
13
|
Leheste JR, Ruvolo KE, Chrostowski JE, Rivera K, Husko C, Miceli A, Selig MK, Brüggemann H, Torres G. P. acnes-Driven Disease Pathology: Current Knowledge and Future Directions. Front Cell Infect Microbiol 2017; 7:81. [PMID: 28352613 PMCID: PMC5348501 DOI: 10.3389/fcimb.2017.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
This review discusses the biology and behavior of Propionibacterium acnes (P. acnes), a dominant bacterium species of the skin biogeography thought to be associated with transmission, recurrence and severity of disease. More specifically, we discuss the ability of P. acnes to invade and persist in epithelial cells and circulating macrophages to subsequently induce bouts of sarcoidosis, low-grade inflammation and metastatic cell growth in the prostate gland. Finally, we discuss the possibility of P. acnes infiltrating the brain parenchyma to indirectly contribute to pathogenic processes in neurodegenerative disorders such as those observed in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Joerg R Leheste
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kathryn E Ruvolo
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Joanna E Chrostowski
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Kristin Rivera
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Christopher Husko
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Alyssa Miceli
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| | - Martin K Selig
- Molecular Pathology Division, Massachusetts General Hospital and Harvard Medical School Boston, MA, USA
| | | | - German Torres
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine Old Westbury, NY, USA
| |
Collapse
|
14
|
Ozolins B, Aimers N, Parrington L, Pearce AJ. Movement disorders and motor impairments following repeated head trauma: A systematic review of the literature 1990-2015. Brain Inj 2016; 30:937-47. [PMID: 27120772 DOI: 10.3109/02699052.2016.1147080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is increasing attention on the long-term sequelae following multiple concussions and traumatic brain injury (TBI) in later life. The majority of the research has focused on long-term cognitive impairments and behavioural changes. Despite being researched and reported, long-term motor dysfunction and movement disorders as a consequence of concussions and TBI have not received due consideration. REVIEW This study used a systematic review and qualitative analysis that focused on two key areas: (1) identified movement disorders in individuals with a reported history of repeated concussions or repeated mild-to-moderate TBIs; and (2) identified motor impairments in individuals with a history of repeated concussions or repeated mild-to-moderate TBIs. Fourteen studies investigating long-term movement disorders or motor impairments as a result of repeated concussions or TBI met the selection criteria. Study ratings were moderate-to-high; therefore, evidence was strong enough to conclude that repeated concussions or repeated mild/moderate TBIs did affect the motor system. CONCLUSION The evidence in this systematic review highlights the need for future studies to include motor outcomes along with cognitive and behavioural outcomes when assessing the long-term effects of repeated concussions or repeated mild/moderate TBIs.
Collapse
Affiliation(s)
- Bede Ozolins
- a Faculty of Health , Deakin University , Melbourne , Australia
| | - Nicole Aimers
- b Centre for Design Innovation (CDI) , Swinburne University of Technology , Melbourne , Australia
| | - Lucy Parrington
- c Department of Biomedical and Health Sciences , Swinburne University of Technology , Melbourne , Australia
| | - Alan J Pearce
- b Centre for Design Innovation (CDI) , Swinburne University of Technology , Melbourne , Australia.,d Melbourne School of Health Sciences , The University of Melbourne , Australia
| |
Collapse
|
15
|
Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson's disease. Rev Neurol (Paris) 2016; 172:14-26. [DOI: 10.1016/j.neurol.2015.09.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
|
16
|
Taylor KM, Saint-Hilaire MH, Sudarsky L, Simon DK, Hersh B, Sparrow D, Hu H, Weisskopf MG. Head injury at early ages is associated with risk of Parkinson's disease. Parkinsonism Relat Disord 2015; 23:57-61. [PMID: 26725141 DOI: 10.1016/j.parkreldis.2015.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 12/03/2015] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The literature on the effect of head injuries on the risk of PD is inconclusive. Some researchers have hypothesized that studies that have seen an effect are simply capturing injury related to pre-clinical PD. However in animal models brain inflammation, which can be initiated by head trauma, has been shown to produce PD-like effects. Furthermore, animal studies have found that early life inflammation in particular is of relevance for PD pathology. METHODS We conducted an unmatched case-control study of 379 neurologist confirmed PD patients and 230 controls from the greater Boston, Massachusetts area with questionnaire data on history of head injury and other covariates. We used multivariable logistic regression to estimate adjusted odds ratios (OR) and their corresponding 95% confidence intervals (CI) for PD. RESULTS When we excluded injuries that occurred less than 10 years prior to the diagnosis of PD (in order to avoid reverse causation), we found an increased risk of PD associated with a head injury that resulted in a loss of consciousness, but it did not reach statistical significance (OR = 1.57; 95% CI = 0.89-2.80). We found a significant (p = 0.04) effect of age at first head injury. For every 5 year earlier age at first head injury with loss of consciousness the OR for PD was 1.37 (95% CI: 1.01-1.86). CONCLUSION Our results suggest that head injury in early life increases the risk of PD.
Collapse
Affiliation(s)
- Kathryn M Taylor
- Harvard T.H. Chan School of Public Health, Dept of Environmental Health, 401 Park Dr., Landmark Building, 3rd Floor, Boston MA 02215, USA.
| | - Marie-Helene Saint-Hilaire
- Department of Neurology, Boston University Medical Center, 72 East Concord Street, C3, Boston, MA 02118, USA.
| | - Lewis Sudarsky
- Department of Neurology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - David K Simon
- Beth Israel Deaconess Medical Center and Harvard Medical School, Department of Neurology 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Bonnie Hersh
- Harvard Vanguard Medical Associates, 133 Brookline Avenue, Boston, MA 02215, USA.
| | - David Sparrow
- VA Boston Healthcare System, Jamaica Plain, 150 South Huntington Avenue, Boston, MA 02130, USA; Boston University Schools of Public Health and Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | - Howard Hu
- Departments of Epidemiology, Global Health, and Environmental Health, University of Toronto Dalla Lana School of Public Health, 6th Floor, 155 College Street, Toronto, Ontario, Canada.
| | - Marc G Weisskopf
- Department of Epidemiology and Environmental Health, Harvard TH Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Abstract
Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany.
| |
Collapse
|
18
|
Head trauma in sport and neurodegenerative disease: an issue whose time has come? Neurobiol Aging 2014; 36:1383-9. [PMID: 25725943 DOI: 10.1016/j.neurobiolaging.2014.12.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/13/2022]
Abstract
A number of small studies and anecdotal reports have been suggested that sports involving repeated head trauma may have long-term risks of neurodegenerative disease. There are now plausible mechanisms for these effects, and a recognition that these problems do not just occur in former boxers, but in a variety of sports involving repeated concussions, and possibly also in sports in which low-level head trauma is common. These neurodegenerative effects potentially include increased risks of impaired cognitive function and dementia, Parkinson's disease, and amyotrophic lateral sclerosis. Many would argue for taking a precautionary approach and immediately banning or restricting sports such as boxing. However, there are important public health issues in terms of how wide the net should be cast in terms of other sports, and what remedial measures could be taken? This in turn requires a major research effort involving both clinical and basic research to understand the underlying mechanisms, leading from head trauma to neurodegenerative disease and epidemiologic studies to assess the long-term consequences.
Collapse
|
19
|
Pearce N, Gallo V, McElvenny D. Sports-related head trauma and neurodegenerative disease. Lancet Neurol 2014; 13:969-70. [DOI: 10.1016/s1474-4422(14)70146-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Teschke K, Marion SA, Tsui JK, Shen H, Rugbjerg K, Harris MA. Parkinson's disease and occupation: differences in associations by case identification method suggest referral bias. Am J Ind Med 2014; 57:163-71. [PMID: 24166740 DOI: 10.1002/ajim.22272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 11/06/2022]
Abstract
METHODS We used a population-based sample of 403 Parkinson's disease cases and 405 controls to examine risks by occupation. Results were compared to a previous clinic-based analysis. RESULTS With censoring of jobs held within 10 years of diagnosis, the following had significantly or strongly increased risks: social science, law and library jobs (OR = 1.8); farming and horticulture jobs (OR = 2.0); gas station jobs (OR = 2.6); and welders (OR = 3.0). The following had significantly decreased risks: management and administration jobs (OR = 0.70); and other health care jobs (OR = 0.44). CONCLUSIONS These results were consistent with other findings for social science and farming occupations. Risks for teaching, medicine and health occupations were not elevated, unlike our previous clinic-based study. This underscores the value of population-based over clinic-based samples. Occupational studies may be particularly susceptible to referral bias because social networks may spread preferentially via jobs.
Collapse
Affiliation(s)
- Kay Teschke
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
| | - Stephen A. Marion
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
| | - Joseph K.C. Tsui
- Pacific Parkinson's Research Centre; University of British Columbia; Vancouver British Columbia Canada
| | - Hui Shen
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
| | - Kathrine Rugbjerg
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
- Danish Cancer Society Research Center; Copenhagen Denmark
| | - M. Anne Harris
- School of Population and Public Health; University of British Columbia; Vancouver British Columbia Canada
- School of Occupational and Public Health; Ryerson University; Toronto Ontario Canada
| |
Collapse
|
21
|
Sundman MH, Hall EE, Chen NK. Examining the relationship between head trauma and neurodegenerative disease: A review of epidemiology, pathology and neuroimaging techniques. ACTA ACUST UNITED AC 2014; 4. [PMID: 25324979 DOI: 10.4172/2161-0460.1000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injuries (TBI) are induced by sudden acceleration-deceleration and/or rotational forces acting on the brain. Diffuse axonal injury (DAI) has been identified as one of the chief underlying causes of morbidity and mortality in head trauma incidents. DAIs refer to microscopic white matter (WM) injuries as a result of shearing forces that induce pathological and anatomical changes within the brain, which potentially contribute to significant impairments later in life. These microscopic injuries are often unidentifiable by the conventional computed tomography (CT) and magnetic resonance (MR) scans employed by emergency departments to initially assess head trauma patients and, as a result, TBIs are incredibly difficult to diagnose. The impairments associated with TBI may be caused by secondary mechanisms that are initiated at the moment of injury, but often have delayed clinical presentations that are difficult to assess due to the initial misdiagnosis. As a result, the true consequences of these head injuries may go unnoticed at the time of injury and for many years thereafter. The purpose of this review is to investigate these consequences of TBI and their potential link to neurodegenerative disease (ND). This review will summarize the current epidemiological findings, the pathological similarities, and new neuroimaging techniques that may help delineate the relationship between TBI and ND. Lastly, this review will discuss future directions and propose new methods to overcome the limitations that are currently impeding research progress. It is imperative that improved techniques are developed to adequately and retrospectively assess TBI history in patients that may have been previously undiagnosed in order to increase the validity and reliability across future epidemiological studies. The authors introduce a new surveillance tool (Retrospective Screening of Traumatic Brain Injury Questionnaire, RESTBI) to address this concern.
Collapse
Affiliation(s)
- Mark H Sundman
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Eric E Hall
- Department of Exercise Science, Elon University, Elon, NC, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|