1
|
Poole JA, Zamora-Sifuentes JL, De Las Vecillas L, Quirce S. Respiratory Diseases Associated With Organic Dust Exposure. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1960-1971. [PMID: 38423290 PMCID: PMC11316665 DOI: 10.1016/j.jaip.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Organic dusts are complex bioaerosol mixtures comprised of dust and par ticulate matter of organic origin. These include components from bacteria, fungi, pollen, and viruses to fragments of animals and plants commonplace to several environmental/occupational settings encompassing agriculture/farming, grain processing, waste/recycling, textile, cotton, woodworking, bird breeding, and more. Organic dust exposures are linked to development of chronic bronchitis, chronic obstructive pulmonary disease, asthma, asthma-like syndrome, byssinosis, hypersensitivity pneumonitis, and idiopathic pulmonary fibrosis. Risk factors of disease development include cumulative dust exposure, smoking, atopy, timing/duration, and nutritional factors. The immunopathogenesis predominantly involves Toll-like receptor signaling cascade, T-helper 1/T-helper 17 lymphocyte responses, neutrophil influx, and potentiation of manifestations associated with allergy. The true prevalence of airway disease directly attributed to organic dust, especially in a workplace setting, remains challenging. Diagnostic confirmation can be difficult and complicated by hesitancy from workers to seek medical care, driven by fears of potential labor-related consequence. Clinical respiratory and systemic presentations coupled with allergy testing, lung function patterns of obstructive versus restrictive disease, and radiological characteristics are typically utilized to delineate these various organic dust-associated respiratory diseases. Prevention, risk reduction, and management primarily focus on reducing exposure to the offending dust, managing symptoms, and preventing disease progression.
Collapse
Affiliation(s)
- Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb.
| | - Jose L Zamora-Sifuentes
- Division of Allergy & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Neb
| | | | - Santiago Quirce
- Department of Allergy, La Paz University of Hospital, IdiPAZ, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
2
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
3
|
Cui H, Zhang C, Zhao K, Liu J, Pu J, Kong Y, Dong S, Chen L, Zhao Y, Chen Y, Chen Z, Zhang L, Wang Z, Guo Z. Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Int J Hyg Environ Health 2023; 251:114173. [PMID: 37119673 DOI: 10.1016/j.ijheh.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Yanbin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yanyan Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China.
| |
Collapse
|
4
|
Shen D, Guo Z, Huang K, Dai P, Jin X, Li Y, Li C. Inflammation-associated pulmonary microbiome and metabolome changes in broilers exposed to particulate matter in broiler houses. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126710. [PMID: 34332479 DOI: 10.1016/j.jhazmat.2021.126710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The particulate matter (PM) in livestock houses, one of the primary sources of atmospheric PM, is not only detrimental to the respiratory health of animals and farmworkers but also poses a threat to the public environment and public health and warrants increased attention. In this study, we investigated the variation in the pulmonary microbiome and metabolome in broiler chickens exposed to PM collected from a broiler house. We examined the pulmonary microbiome and metabolome in broilers, observing that PM induced a visible change in α and β diversity. A total of 66 differential genera, including unclassified_f_Ruminococcaceae and Campylobacter, were associated with pulmonary inflammation. Untargeted metabolomics was utilised to identify 63 differential metabolites induced by PM and correlated with differential bacteria. We observed that PM resulted in injury of the broiler lung and disruption of the microbial community, as well as causing changes in the observed metabolites. These results imply that perturbations to the microbiome and metabolome may play pivotal roles in the mechanism underlying PM-induced broiler lung damage.
Collapse
Affiliation(s)
- Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhendong Guo
- Military Veterinary Research Institute, Academy of Military Medical Sciences, Changchun 130117, China
| | - Kai Huang
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Jin
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol 2020; 94:3629-3644. [DOI: 10.1007/s00204-020-02905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
6
|
Tang Q, Huang K, Liu J, Shen D, Dai P, Li Y, Li C. Seasonal variations of microbial assemblage in fine particulate matter from a nursery pig house. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134921. [PMID: 31771854 DOI: 10.1016/j.scitotenv.2019.134921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The microorganisms contained in PM2.5 from livestock houses can spread over long distances through airborne transmission. As such, the potential bacterial pathogens and fungal allergens within can pose a formidable threat to nearby residents' health and the overall environment. However, little is known about the microbial assemblage contained in PM2.5 from pig houses. In this study, 16S and 18S rRNA gene sequencing was employed to analyze the bacterial and fungal assemblage contained in PM2.5 from a nursery pig house across four seasons, respectively. The results showed that alpha diversity was higher in summer and autumn compared to the spring and winter. The bacterial and fungal assemblage varied according to season. At the phylum level, the dominant bacteria and fungi were Firmicutes and Basidiomycota, respectively, across the four seasons. At the genus level, a total of five potential bacterial pathogen and 20 potential fungal allergen genera were identified across the samples. The most abundant bacterial pathogen and fungal allergen genera were observed in summer and autumn, respectively, but neither had a significant correlation with PM2.5 concentration. Moreover, microbial diversity and the relative abundance of fungal allergen genera were positively correlated with temperature and relative humidity. It can be concluded that microbial diversity and assemblage varied significantly among the seasons in a nursery pig house, and this can be useful in exploring the potential risks of PM2.5 from pig houses across all four seasons.
Collapse
Affiliation(s)
- Qian Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Junze Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengyuan Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Lassmann-Klee PG, Sundblad BM, Malmberg LP, Sovijärvi ARA, Piirilä P. Measurement of bronchial hyperreactivity: comparison of three Nordic dosimetric methods. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:222-229. [PMID: 32031428 DOI: 10.1080/00365513.2020.1719541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Clinical testing of bronchial hyperreactivity (BHR) provides valuable information in asthma diagnostics. Nevertheless, the test results depend to a great extent on the testing procedure: test substance, apparatus and protocol. In Nordic countries, three protocols predominate in the testing field: Per Malmberg, Nieminen and Sovijärvi methods. However, knowledge of their equivalence is limited. We aimed to find equivalent provocative doses (PD) to obtain similar bronchoconstrictive responses for the three protocols. We recruited 31 patients with suspected asthma and health care workers and performed BHR testing with methacholine according to Malmberg and Nieminen methods, and with histamine according to Sovijärvi. We obtained the individual response-dose slopes for each method and predicted equivalent PD values. Applying a mixed-model, we found significant differences in the mean (standard error of mean) response-dose (forced expiratory volume in one second (FEV1)%/mg): Sovijärvi 7.2 (1.5), Nieminen 13.8 (4.2) and Malmberg 26 (7.3). We found that the earlier reported cut-point values for moderate BHR and marked BHR between the Sovijärvi (PD15) and Nieminen (PD20) methods were similar, but with the Malmberg method a significant bronchoconstrictive reaction was measured with lower PD20 values. We obtained a relationship between slope values and PD (mg) between different methods, useful in epidemiological research and clinical practice.
Collapse
Affiliation(s)
- Paul G Lassmann-Klee
- Unit of Clinical Physiology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Britt-Marie Sundblad
- The National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leo P Malmberg
- Laboratory of Clinical Physiology, Skin and Allergy Hospital, Helsinki, Finland
| | - Anssi R A Sovijärvi
- Unit of Clinical Physiology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|