1
|
Goten C, Usui S, Takashima SI, Inoue O, Yamaguchi K, Hashimuko D, Takeda Y, Nomura A, Sakata K, Kaneko S, Takamura M. Important Role of Endogenous Nerve Growth Factor Receptor in the Pathogenesis of Hypoxia-Induced Pulmonary Hypertension in Mice. Int J Mol Sci 2023; 24:1868. [PMID: 36768190 PMCID: PMC9916204 DOI: 10.3390/ijms24031868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with poor prognosis; thus, a new mechanism for PAH treatment is necessary. Circulating nerve growth factor receptor (Ngfr)-positive cells in peripheral blood mononuclear cells are associated with disease severity and the prognosis of PAH patients; however, the role of Ngfr in PAH is unknown. In this study, we evaluated the function of Ngfr using Ngfr gene-deletion (Ngfr-/-) mice. To elucidate the role of Ngfr in pulmonary hypertension (PH), we used Ngfr-/- mice that were exposed to chronic hypoxic conditions (10% O2) for 3 weeks. The development of hypoxia-induced PH was accelerated in Ngfr-/- mice compared to littermate controls. In contrast, the reconstitution of bone marrow (BM) in Ngfr-/- mice transplanted with wild-type BM cells improved PH. Notably, the exacerbation of PH in Ngfr-/- mice was accompanied by the upregulation of pulmonary vascular remodeling-related genes in lung tissue. In a hypoxia-induced PH model, Ngfr gene deletion resulted in PH exacerbation. This suggests that Ngfr may be a key molecule involved in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shin-ichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Kosei Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Daiki Hashimuko
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Yusuke Takeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Information-Based Medicine Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Ishikawa, Japan
| |
Collapse
|
2
|
Eight-year longitudinal study of whole blood gene expression profiles in individuals undergoing long-term medical follow-up. Sci Rep 2021; 11:16564. [PMID: 34400700 PMCID: PMC8368195 DOI: 10.1038/s41598-021-96078-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Blood circulates throughout the body via the peripheral tissues, contributes to host homeostasis and maintains normal physiological functions, in addition to responding to lesions. Previously, we revealed that gene expression analysis of peripheral blood cells is a useful approach for assessing diseases such as diabetes mellitus and cancer because the altered gene expression profiles of peripheral blood cells can reflect the presence and state of diseases. However, no chronological assessment of whole gene expression profiles has been conducted. In the present study, we collected whole blood RNA from 61 individuals (average age at registration, 50 years) every 4 years for 8 years and analyzed gene expression profiles using a complementary DNA microarray to examine whether these profiles were stable or changed over time. We found that the genes with very stable expression were related mostly to immune system pathways, including antigen cell presentation and interferon-related signaling. Genes whose expression was altered over the 8-year study period were principally involved in cellular machinery pathways, including development, signal transduction, cell cycle, apoptosis, and survival. Thus, this chronological examination study showed that the gene expression profiles of whole blood can reveal unmanifested physiological changes.
Collapse
|
3
|
Goten C, Usui S, Takashima SI, Inoue O, Okada H, Shimojima M, Sakata K, Kawashiri M, Kaneko S, Takamura M. Circulating nerve growth factor receptor positive cells are associated with severity and prognosis of pulmonary arterial hypertension. Pulm Circ 2021; 11:2045894021990525. [PMID: 33767850 PMCID: PMC7953227 DOI: 10.1177/2045894021990525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) remains a disease with a poor prognosis, so
early detection and treatment are very important. Sensitive and non-invasive
markers for PAH are urgently required. This study was performed to identify
sensitive markers of the clinical severity and prognosis of PAH. Patients
diagnosed with PAH (n = 30) and control participants (n = 15) were enrolled in
this observational study. Major EPC and MSC markers (including CD34, CD133,
VEGFR2, CD90, PDGFRα, and NGFR) in peripheral blood mononuclear cells (PBMNCs)
were assessed by flow cytometry. Associations of these markers with hemodynamic
parameters (e.g. mean pulmonary arterial pressure, pulmonary vascular
resistance, and cardiac index) were assessed. Patients with PAH were followed up
for 12 months to assess the incidence of major adverse events, defined as death
or lung transplantation. Levels of circulating EPC and MSC markers in PBMNCs
were higher in patients with PAH than in control participants. Among the studied
markers, nerve growth factor receptor (NGFR) was significantly positively
correlated with hemodynamic parameters. During the 12-month follow-up period,
major-event-free survival was significantly higher in patients with PAH who had
relatively low frequencies of NGFR positive cells than patients who had higher
frequencies. These results suggested that the presence of circulating NGFR
positive cells among PBMNCs may be a novel biomarker for the severity and
prognosis of PAH.
Collapse
Affiliation(s)
- Chiaki Goten
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.,Department of System Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shin-Ichiro Takashima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Oto Inoue
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Okada
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masaya Shimojima
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masaaki Kawashiri
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of System Biology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Wang TN, Yang PJ, Tseng YT, Tsai YS, Kuo PL, Chiu CC, Liang SS, Hsieh TH, Hou MF, Tsai EM. Visceral obesity and cell cycle pathways serve as links in the association between bisphenol A exposure and breast cancer. Oncol Lett 2020; 20:33-42. [PMID: 32565931 PMCID: PMC7285711 DOI: 10.3892/ol.2020.11553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/16/2018] [Indexed: 11/05/2022] Open
Abstract
It has been identified that bisphenol A (BPA) exposure causes developmental toxicity in breast cells. However, the exact molecular mechanisms underlying the association between exposure to BPA and breast cancer remain unclear. The aim of the present study was to investigate the BPA-regulated signaling pathways associated with the aggressiveness and the development of breast cancer. Microarray technology and functional gene set analyses were used to evaluate BPA and breast cancer-associated biomarkers and pathways in a discovery-driven manner. Using individual dataset analyses, it was indicated that two BPA-associated gene sets, the visceral obesity pathway, involved in visceral fat deposits and the metabolic syndrome, and the cell cycle pathway, involved in cyclins and cell cycle regulation, were significantly associated with a high grade of aggressiveness and the development of estrogen receptor (ER)-positive breast cancer (between P<0.05 and 0.0001). The pooled analysis indicated that the most significant pathway was G1/S checkpoint regulation, and the cyclin and cell cycle regulation pathway for BPA-associated ER-positive cancer. Cancer cell signaling pathways were associated with healthy breast cells developing into breast cancer. The visceral obesity and the cell cycle pathways were indicated to link BPA exposure to breast cancer. The results of the present study demonstrate a significant association between breast cancer and BPA-regulated gene pathways.
Collapse
Affiliation(s)
- Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Pei-Jing Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yu-Ting Tseng
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Shan Tsai
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Po-Lin Kuo
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Chien-Chih Chiu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Tsung-Hua Hsieh
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C
| | - Ming-Feng Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Department of Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan, R.O.C.,Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30010, Taiwan, R.O.C
| | - Eing-Mei Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Center for Research Resources and Development, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan, R.O.C.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|