1
|
Perera R, Stevens R, Aronson JK, Banerjee A, Evans J, Feakins BG, Fleming S, Glasziou P, Heneghan C, Hobbs FDR, Jones L, Kurtinecz M, Lasserson DS, Locock L, McLellan J, Mihaylova B, O’Callaghan CA, Oke JL, Pidduck N, Plüddemann A, Roberts N, Schlackow I, Shine B, Simons CL, Taylor CJ, Taylor KS, Verbakel JY, Bankhead C. Long-term monitoring in primary care for chronic kidney disease and chronic heart failure: a multi-method research programme. PROGRAMME GRANTS FOR APPLIED RESEARCH 2021. [DOI: 10.3310/pgfar09100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background
Long-term monitoring is important in chronic condition management. Despite considerable costs of monitoring, there is no or poor evidence on how, what and when to monitor. The aim of this study was to improve understanding, methods, evidence base and practice of clinical monitoring in primary care, focusing on two areas: chronic kidney disease and chronic heart failure.
Objectives
The research questions were as follows: does the choice of test affect better care while being affordable to the NHS? Can the number of tests used to manage individuals with early-stage kidney disease, and hence the costs, be reduced? Is it possible to monitor heart failure using a simple blood test? Can this be done using a rapid test in a general practitioner consultation? Would changes in the management of these conditions be acceptable to patients and carers?
Design
Various study designs were employed, including cohort, feasibility study, Clinical Practice Research Datalink analysis, seven systematic reviews, two qualitative studies, one cost-effectiveness analysis and one cost recommendation.
Setting
This study was set in UK primary care.
Data sources
Data were collected from study participants and sourced from UK general practice and hospital electronic health records, and worldwide literature.
Participants
The participants were NHS patients (Clinical Practice Research Datalink: 4.5 million patients), chronic kidney disease and chronic heart failure patients managed in primary care (including 750 participants in the cohort study) and primary care health professionals.
Interventions
The interventions were monitoring with blood and urine tests (for chronic kidney disease) and monitoring with blood tests and weight measurement (for chronic heart failure).
Main outcome measures
The main outcomes were the frequency, accuracy, utility, acceptability, costs and cost-effectiveness of monitoring.
Results
Chronic kidney disease: serum creatinine testing has increased steadily since 1997, with most results being normal (83% in 2013). Increases in tests of creatinine and proteinuria correspond to their introduction as indicators in the Quality and Outcomes Framework. The Chronic Kidney Disease Epidemiology Collaboration equation had 2.7% greater accuracy (95% confidence interval 1.6% to 3.8%) than the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate. Estimated annual transition rates to the next chronic kidney disease stage are ≈ 2% for people with normal urine albumin, 3–5% for people with microalbuminuria (3–30 mg/mmol) and 3–12% for people with macroalbuminuria (> 30 mg/mmol). Variability in estimated glomerular filtration rate-creatinine leads to misclassification of chronic kidney disease stage in 12–15% of tests in primary care. Glycaemic-control and lipid-modifying drugs are associated with a 6% (95% confidence interval 2% to 10%) and 4% (95% confidence interval 0% to 8%) improvement in renal function, respectively. Neither estimated glomerular filtration rate-creatinine nor estimated glomerular filtration rate-Cystatin C have utility in predicting rate of kidney function change. Patients viewed phrases such as ‘kidney damage’ or ‘kidney failure’ as frightening, and the term ‘chronic’ was misinterpreted as serious. Diagnosis of asymptomatic conditions (chronic kidney disease) was difficult to understand, and primary care professionals often did not use ‘chronic kidney disease’ when managing patients at early stages. General practitioners relied on Clinical Commissioning Group or Quality and Outcomes Framework alerts rather than National Institute for Health and Care Excellence guidance for information. Cost-effectiveness modelling did not demonstrate a tangible benefit of monitoring kidney function to guide preventative treatments, except for individuals with an estimated glomerular filtration rate of 60–90 ml/minute/1.73 m2, aged < 70 years and without cardiovascular disease, where monitoring every 3–4 years to guide cardiovascular prevention may be cost-effective. Chronic heart failure: natriuretic peptide-guided treatment could reduce all-cause mortality by 13% and heart failure admission by 20%. Implementing natriuretic peptide-guided treatment is likely to require predefined protocols, stringent natriuretic peptide targets, relative targets and being located in a specialist heart failure setting. Remote monitoring can reduce all-cause mortality and heart failure hospitalisation, and could improve quality of life. Diagnostic accuracy of point-of-care N-terminal prohormone of B-type natriuretic peptide (sensitivity, 0.99; specificity, 0.60) was better than point-of-care B-type natriuretic peptide (sensitivity, 0.95; specificity, 0.57). Within-person variation estimates for B-type natriuretic peptide and weight were as follows: coefficient of variation, 46% and coefficient of variation, 1.2%, respectively. Point-of-care N-terminal prohormone of B-type natriuretic peptide within-person variability over 12 months was 881 pg/ml (95% confidence interval 380 to 1382 pg/ml), whereas between-person variability was 1972 pg/ml (95% confidence interval 1525 to 2791 pg/ml). For individuals, monitoring provided reassurance; future changes, such as increased testing, would be acceptable. Point-of-care testing in general practice surgeries was perceived positively, reducing waiting time and anxiety. Community heart failure nurses had greater knowledge of National Institute for Health and Care Excellence guidance than general practitioners and practice nurses. Health-care professionals believed that the cost of natriuretic peptide tests in routine monitoring would outweigh potential benefits. The review of cost-effectiveness studies suggests that natriuretic peptide-guided treatment is cost-effective in specialist settings, but with no evidence for its value in primary care settings.
Limitations
No randomised controlled trial evidence was generated. The pathways to the benefit of monitoring chronic kidney disease were unclear.
Conclusions
It is difficult to ascribe quantifiable benefits to monitoring chronic kidney disease, because monitoring is unlikely to change treatment, especially in chronic kidney disease stages G3 and G4. New approaches to monitoring chronic heart failure, such as point-of-care natriuretic peptide tests in general practice, show promise if high within-test variability can be overcome.
Future work
The following future work is recommended: improve general practitioner–patient communication of early-stage renal function decline, and identify strategies to reduce the variability of natriuretic peptide.
Study registration
This study is registered as PROSPERO CRD42015017501, CRD42019134922 and CRD42016046902.
Funding
This project was funded by the National Institute for Health Research (NIHR) Programme Grants for Applied Research programme and will be published in full in Programme Grants for Applied Research; Vol. 9, No. 10. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Rafael Perera
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Richard Stevens
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jeffrey K Aronson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Amitava Banerjee
- Institute of Health Informatics, University College London, London, UK
| | - Julie Evans
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Benjamin G Feakins
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Susannah Fleming
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Paul Glasziou
- Institute for Evidence-Based Healthcare, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD, Australia
| | - Carl Heneghan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - FD Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Louise Jones
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Milena Kurtinecz
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Daniel S Lasserson
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Louise Locock
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Julie McLellan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Borislava Mihaylova
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Institute of Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Jason L Oke
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nicola Pidduck
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Nia Roberts
- Bodleian Health Care Libraries, Knowledge Centre, University of Oxford, Oxford, UK
| | - Iryna Schlackow
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Brian Shine
- Department of Clinical Biochemistry, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Claire L Simons
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Clare J Taylor
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Kathryn S Taylor
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jan Y Verbakel
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- National Institute for Health Research (NIHR) Community Healthcare MedTech and In Vitro Diagnostics Co-operative (MIC), Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Clare Bankhead
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
McLellan J, Bankhead CR, Oke JL, Hobbs FDR, Taylor CJ, Perera R. Natriuretic peptide-guided treatment for heart failure: a systematic review and meta-analysis. BMJ Evid Based Med 2020; 25:33-37. [PMID: 31326896 PMCID: PMC7029248 DOI: 10.1136/bmjebm-2019-111208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND GUIDE-IT, the largest trial to date, published in August 2017, evaluating the effectiveness of natriuretic peptide (NP)-guided treatment of heart failure (HF), was stopped early for futility on a composite outcome. However, the reported effect sizes on individual outcomes of all-cause mortality and HF admissions are potentially clinically relevant. OBJECTIVE This systematic review and meta-analysis aims to combine all available trial level evidence to determine if NP-guided treatment of HF reduces all-cause mortality and HF admissions in patients with HF. STUDY SELECTION Eight databases, no language restrictions, up to November 2017 were searched for all randomised controlled trials comparing NP-guided treatment versus clinical assessment alone in adult patients with HF. No language restrictions were applied. Publications were independently double screened and extracted. Fixed-effect meta-analyses were conducted. FINDINGS 89 papers were included, reporting 19 trials (4554 participants), average ages 62-80 years. Pooled risk ratio estimates for all-cause mortality (16 trials, 4063 participants) were 0.87, 95% CI 0.77 to 0.99 and 0.80, 95% CI 0.72 to 0.89 for HF admissions (11 trials, 2822 participants). Sensitivity analyses, restricted to low risk of bias, produced similar estimates, but were no longer statistically significant. CONCLUSIONS Considering all the evidence to date, the pooled effects suggest that NP-guided treatment is beneficial in reducing HF admissions and all-cause mortality. However, there is still insufficient high-quality evidence to make definitive recommendations on the use of NP-guided treatment in clinical practice. TRIAL REGISTRATION NUMBER Systematic Review Cochrane Database Number: CD008966.
Collapse
Affiliation(s)
- Julie McLellan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Clare R Bankhead
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jason L Oke
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Clare J Taylor
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Rafael Perera
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|