1
|
Huang G, Cheng J, Liu W, Yang T, Ye T, Zhang Q, Chen Q, Xu Y. Association of P2X7 polymorphisms on Type 2 diabetes mellitus susceptibility and diabetic complications. PLoS One 2025; 20:e0318134. [PMID: 39869622 DOI: 10.1371/journal.pone.0318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/10/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVES This case-control study aims to clarify the impact of single nucleotide polymorphisms (SNPs) within the P2X7 gene on susceptibility to type 2 diabetes mellitus (T2DM) and to evaluate their association with diabetic complications. METHODS This study is comprised with 200 T2DM cases and 200 healthy controls. Seven candidate SNP loci were screened, and TaqMan-MGB real-time PCR technology was used to determine the polymorphic variants of P2X7. Different genotype and allele frequencies were compared by Pearson's χ2 tests and logistic regression analysis. RESULTS Three P2X7 SNPs were found to be associated with T2DM risk. Specifically, rs7958311 GA (OR = 1.323, p = 0.002), rs7958311 AA (OR = 1.508, p = 0.038), rs208294 CC (OR = 1.854, p = 0.042) showed a higher susceptibility to T2DM, whilst rs11065464 CA (OR = 0.614, p = 0.022) was associated with a reduced risk. Logistic regression analysis indicated that rs7958311 was linked to an increased risk for nephropathy (OR = 1.833, p = 0.022), but with a decreased risk for peripheral artery disease (OR = 0.550, p = 0.042). Additionally, rs208294 was identified as a risk factor for peripheral neuropathy (OR = 2.101, p = 0.016). CONCLUSIONS We found that P2X7 polymorphisms are significantly associated with the risk of T2DM and its complications, suggesting that targeting P2X7 may offer a novel therapeutic strategy for the prevention and personal treatment of T2DM.
Collapse
Affiliation(s)
- Guoni Huang
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Jing Cheng
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Wenfeng Liu
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Tong Yang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, P. R. China
| | - Tao Ye
- Department of Endocrine Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Qian Zhang
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Qi Chen
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| | - Yuzhong Xu
- Department of Laboratory Medicine, People's Hospital of Shenzhen Baoan District, Shenzhen, P. R. China
| |
Collapse
|
2
|
Charras A, Hofmann SR, Cox A, Schulze F, Russ S, Northey S, Liu X, Fang Y, Haldenby S, Hartmann H, Bassuk AG, Carvalho A, Sposito F, Grinstein L, Rösen-Wolff A, Meyer-Bahlburg A, Beresford MW, Lainka E, Foell D, Wittkowski H, Girschick HJ, Morbach H, Uebe S, Hüffmeier U, Ferguson PJ, Hedrich CM. P2RX7 gene variants associate with altered inflammasome assembly and reduced pyroptosis in chronic nonbacterial osteomyelitis (CNO). J Autoimmun 2024; 144:103183. [PMID: 38401466 DOI: 10.1016/j.jaut.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Chronic nonbacterial osteomyelitis (CNO), an autoinflammatory bone disease primarily affecting children, can cause pain, hyperostosis and fractures, affecting quality-of-life and psychomotor development. This study investigated CNO-associated variants in P2RX7, encoding for the ATP-dependent trans-membrane K+ channel P2X7, and their effects on NLRP3 inflammasome assembly. Whole exome sequencing in two related transgenerational CNO patients, and target sequencing of P2RX7 in a large CNO cohort (N = 190) were conducted. Results were compared with publicly available datasets and regional controls (N = 1873). Findings were integrated with demographic and clinical data. Patient-derived monocytes and genetically modified THP-1 cells were used to investigate potassium flux, inflammasome assembly, pyroptosis, and cytokine release. Rare presumably damaging P2RX7 variants were identified in two related CNO patients. Targeted P2RX7 sequencing identified 62 CNO patients with rare variants (32.4%), 11 of which (5.8%) carried presumably damaging variants (MAF <1%, SIFT "deleterious", Polyphen "probably damaging", CADD >20). This compared to 83 of 1873 controls (4.4%), 36 with rare and presumably damaging variants (1.9%). Across the CNO cohort, rare variants unique to one (Median: 42 versus 3.7) or more (≤11 patients) participants were over-represented when compared to 190 randomly selected controls. Patients with rare damaging variants more frequently experienced gastrointestinal symptoms and lymphadenopathy while having less spinal, joint and skin involvement (psoriasis). Monocyte-derived macrophages from patients, and genetically modified THP-1-derived macrophages reconstituted with CNO-associated P2RX7 variants exhibited altered potassium flux, inflammasome assembly, IL-1β and IL-18 release, and pyroptosis. Damaging P2RX7 variants occur in a small subset of CNO patients, and rare P2RX7 variants may represent a CNO risk factor. Observations argue for inflammasome inhibition and/or cytokine blockade and may allow future patient stratification and individualized care.
Collapse
Affiliation(s)
- Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Sigrun R Hofmann
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Allison Cox
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Felix Schulze
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Susanne Russ
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Xuan Liu
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Yongxiang Fang
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Sam Haldenby
- Centre of Genome Research, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, UK
| | - Hella Hartmann
- Light Microscopy Facility, Centre for Regenerative Therapies, Technische Universität Dresden, Germany
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Ana Carvalho
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Francesca Sposito
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK
| | - Lev Grinstein
- Department of Pediatrics, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Almut Meyer-Bahlburg
- Pediatric Rheumatology and Immunology, Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Elke Lainka
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | - Dirk Foell
- Department for Pediatric Rheumatology & Immunology, University Hospital Münster, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | - Helmut Wittkowski
- Department for Pediatric Rheumatology & Immunology, University Hospital Münster, Germany on behalf of the German Autoinflammatory Disease Network (AID Net), Germany
| | | | - Henner Morbach
- Department of Pediatrics, University Hospital Würzburg, Germany
| | - Steffen Uebe
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Polly J Ferguson
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, USA
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, UK; Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
3
|
Zhang S, Qiu Y, Huang L, Bi L, Guo Y, You K, Huang G, Wang Y, Lu H, Jin H, Shan H. Ankylosing spondylitis PET imaging and quantifications via P2X7 receptor-targeting radioligand [ 18F]GSK1482160. Eur J Nucl Med Mol Imaging 2023; 50:3589-3601. [PMID: 37466648 DOI: 10.1007/s00259-023-06342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Ankylosing spondylitis (AS) is a chronic inflammatory disease of the axial spine; however, the quantitative detection of inflammation in AS remains a challenge in clinical settings. We aimed to investigate the feasibility of using a specific P2X7R-targeting 18F-labeled tracer [18F]GSK1482160 for positron emission tomography (PET) imaging and the quantification of AS. METHODS The radioligand [18F]GSK1482160 was obtained based on nucleophilic aliphatic substitution. Dynamic [18F]GSK1482160 and [18F]FDG micro-PET/CT imaging were performed on AS mice (n = 8) and age-matched controls (n = 8). Tracer kinetics modeling was performed using Logan's graphical arterial input function analysis to quantify the in vivo expression of P2X7R. The post-PET tissues were collected for hematoxylin-eosin (H&E), immunohistochemical (IHC), and immunofluorescence (IF) staining. RESULTS [18F]GSK1482160 PET/CT imaging revealed that the specific binding in the ankle joint and sacroiliac joint (SIJ) of the AS at 8 weeks group (BPNDankle-AS-8W (non-displaceable binding potential of the ankle) 3.931 ± 0.74; BPND SIJ-AS-8W (BPBD of the SIJ) 4.225 ± 0.84) were significantly higher than the controls at 8 weeks group (BPNDankle-Ctr-8W 0.325 ± 0.15, BPNDSJJ-Ctr-8W 0.319 ± 0.17) respectively, and the AS at 14 weeks group (BPNDankle-AS-14W 12.212 ± 2.25; BPNDSJJ-AS-14W 13.389 ± 3.60) were significantly higher than the controls at 14 weeks group (BPNDankle-Ctr-14W 0.204 ± 0.16, BPNDSJJ-Ctr-14W 0.655 ± 0.35) respectively. The four groups had no significant difference in the [18F]FDG uptake of ankle and SIJ. IHC and IF staining revealed that the overexpression of P2X7R was colocalized with activated macrophages from the ankle synovium and spinal endplate in mice with AS, indicating that quantification of P2X7R may contribute to the understanding of the pathogenesis of inflammation in human AS. CONCLUSION This study developed a novel P2X7R-targeting PET tracer [18F]GSK1482160 to detect the expression of P2X7R in AS mouse models and provided powerful non-invasive PET imaging and quantification for AS.
Collapse
Affiliation(s)
- Shiyanjin Zhang
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lihua Huang
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yuanqing Guo
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China
| | - Ke You
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Yuhan Wang
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China
| | - Hai Lu
- Department of Spine Surgery, Sun Yat-Sen University Fifth Affiliated Hospital, Zhuhai, 519000, Guangdong Province, China.
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| |
Collapse
|
4
|
Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother 2023; 158:114205. [PMID: 36916431 DOI: 10.1016/j.biopha.2022.114205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Different studies have confirmed that P2X purinergic receptors play a key role in inflammation. Activation of P2X purinergic receptors can release inflammatory cytokines and participate in the progression of inflammatory diseases. In an inflammatory microenvironment, cells can release a large amount of ATP to activate P2X receptors, open non-selective cation channels, activate multiple intracellular signaling, release multiple inflammatory cytokines, amplify inflammatory response. While P2X4 and P2X7 receptors play an important role in the process of inflammation. P2X4 receptor can mediate the activation of microglia involved in neuroinflammation, and P2X7 receptor can mediate different inflammatory cells to mediate the progression of tissue-wide inflammation. At present, the role of P2X receptors in inflammatory response has been widely recognized and affirmed. Therefore, in this paper, we discussed the role of P2X receptors-mediated inflammation. Moreover, we also described the effects of some antagonists (such as A-438079, 5-BDBD, A-804598, A-839977, and A-740003) on inflammation relief by antagonizing the activities of P2X receptors.
Collapse
Affiliation(s)
- Ji-Peng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Shi-Qi Hu
- Queen Mary College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Jia-Feng Lu
- Basic medical school, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Chang-Lei Wu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
5
|
Akhtari M, Zargar SJ, Vojdanian M, Jamshidi A, Mahmoudi M. Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-α and expressed more IL1B in response to BzATP than macrophages from healthy subjects. Sci Rep 2021; 11:17842. [PMID: 34497300 PMCID: PMC8426480 DOI: 10.1038/s41598-021-96262-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Macrophages participate in the pathogenesis of ankylosing spondylitis (AS) by producing inflammatory cytokines. Extracellular adenosine triphosphate (eATP), released during cell stress, acts through purinergic receptors (P2XR and P2YR) and induces inflammatory responses. We investigated the effect of 2'(3')-O-(4-benzoyl benzoyl) ATP (BzATP) (a prototypic agonist of P2X7R) on the production of inflammatory cytokines in both monocyte-generated (M2-like) and M1 macrophages from patients and controls. Macrophages were differentiated from isolated periphery-monocytes (n = 14 in each group) by macrophage colony-stimulating factor (M-CSF). Using LPS and IFN-γ, macrophages were skewed toward M1 type and were treated with BzATP. Gene expression and protein release of IL-1β, IL-23, and TNF-α were evaluated by real-time PCR and ELISA methods respectively before and after treatment. BzATP significantly increased the protein release of TNF-α and the expression of TNFA and IL1B in monocyte-generated macrophages. Besides, BzATP treatment significantly upregulated IL1B expression, reduced TNFA and IL23A expression, and TNF-α release in M1 macrophages from both groups. Monocyte-generated and M1 macrophages from AS patients released higher TNF-α and expressed more IL1B in response to the same concentration of BzATP treatment respectively. Based on our results, AS macrophages were more sensitive to BzATP treatment and responded more intensively. Besides, the diverse effects of BzATP on monocyte-derived and M1 macrophages in our study may represent the differed inflammatory properties of these two groups of macrophages in response to eATP in the body.
Collapse
Affiliation(s)
- Maryam Akhtari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, P.O. Box: 141556455, Tehran, Iran
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave, P.O. Box: 1411713137, Tehran, Iran
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Zargar
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, P.O. Box: 141556455, Tehran, Iran.
| | - Mahdi Vojdanian
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave, P.O. Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave, P.O. Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Kargar Ave, P.O. Box: 1411713137, Tehran, Iran.
- Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Jiang Y, Cao X, Wang H. Comparative genomic analysis of a naturally born serpentized pig reveals putative mutations related to limb and bone development. BMC Genomics 2021; 22:629. [PMID: 34454433 PMCID: PMC8399796 DOI: 10.1186/s12864-021-07925-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND It is believed that natural selection acts on the phenotypical changes caused by mutations. Phenotypically, from fishes to amphibians to reptiles, the emergence of limbs greatly facilitates the landing of ancient vertebrates, but the causal mutations and evolutionary trajectory of this process remain unclear. RESULTS We serendipitously obtained a pig of limbless phenotype. Mutations specific to this handicapped pig were identified using genome re-sequencing and comparative genomic analysis. We narrowed down the causal mutations to particular chromosomes and even several candidate genes and sites, such like a mutation-containing codon in gene BMP7 (bone morphogenetic protein) which was conserved in mammals but variable in lower vertebrates. CONCLUSIONS We parsed the limbless-related mutations in the light of evolution. The limbless pig shows phenocopy of the clades before legs were evolved. Our findings might help deduce the emergence of limbs during vertebrate evolution and should be appealing to the broad community of human genetics and evolutionary biology.
Collapse
Affiliation(s)
- Yankai Jiang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xinyue Cao
- School of Medicine and Nursing, Dezhou University, Dezhou, 253023, Shandong, China
| | - Haibin Wang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
7
|
Chang S, Li J, Li Q, Yu CP, Xie LL, Wang S. Retrieving the deleterious mutations before extinction: genome-wide comparison of shared derived mutations in liver cancer and normal population. Postgrad Med J 2021; 98:584-590. [PMID: 33837126 DOI: 10.1136/postgradmedj-2021-139993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
STUDY PURPOSE Deleterious mutations would be rapidly purged from natural populations along with the extinction of their carriers. The currently observed mutations in existing species are mostly neutral. The inaccessibility of deleterious mutations impedes the functional studies on how these mutations affect the fitness at individual level. STUDY DESIGN The connection between the deleterious genotype and the non-adaptive phenotype could be bridged by sequencing the genome before extinction. Although this approach is no longer feasible for evolutionary biologists, it is feasible for cancer biologists by profiling the mutations in tumour samples which are so deleterious that the carriers hardly live. RESULTS By comparing the derived mutation profile between normal populations and patients with liver cancer, we found that the shared mutations, which are highly deleterious, are suppressed to low allele frequencies in normal populations and tissues, but show remarkably high frequency in tumours. The density of shared mutations is negatively correlated with gene conservation and expression levels. CONCLUSIONS Deleterious mutations are suppressed in functionally important genes as well as in normal populations. This work deepened our understanding on how natural selection act on deleterious mutations by analogising the cancer evolution to species evolution, which are essentially the same molecular process but at different time scales.
Collapse
Affiliation(s)
- Shuai Chang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qun Li
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun-Peng Yu
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling-Ling Xie
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Wang
- Department of Interventional Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Li Q, Li J, Yu CP, Chang S, Xie LL, Wang S. Synonymous mutations that regulate translation speed might play a non-negligible role in liver cancer development. BMC Cancer 2021; 21:388. [PMID: 33836673 PMCID: PMC8033552 DOI: 10.1186/s12885-021-08131-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
Background Synonymous mutations do not change the protein sequences. Automatically, they have been regarded as neutral events and are ignored in the mutation-based cancer studies. However, synonymous mutations will change the codon optimality, resulting in altered translational velocity. Methods We fully utilized the transcriptome and translatome of liver cancer and normal tissue from ten patients. We profiled the mutation spectrum and examined the effect of synonymous mutations on translational velocity. Results Synonymous mutations that increase the codon optimality significantly enhanced the translational velocity, and were enriched in oncogenes. Meanwhile, synonymous mutations decreasing codon optimality slowed down translation, and were enriched in tumor suppressor genes. These synonymous mutations significantly contributed to the translational changes in tumor samples compared to normal samples. Conclusions Synonymous mutations might play a role in liver cancer development by altering codon optimality and translational velocity. Synonymous mutations should no longer be ignored in the genome-wide studies.
Collapse
Affiliation(s)
- Qun Li
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jian Li
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chun-Peng Yu
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Chang
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling-Ling Xie
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Wang
- Department of interventional radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|