1
|
Choi YJ, Filler TJ, Wolf-Vollenbröker M, Lee JH, Lee HJ. Territories of Nerve Endings of the Medial Plantar Nerve within the Abductor Hallucis Muscle: Clinical Implications for Potential Pain Management. Diagnostics (Basel) 2024; 14:1716. [PMID: 39202204 PMCID: PMC11354053 DOI: 10.3390/diagnostics14161716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to elucidate the intramuscular distribution pattern of the medial plantar nerve and determine its motor nerve ending territories within the abductor hallucis muscle using modified Sihler's staining and external anatomical landmarks. The study included 40 specimens of the abductor hallucis muscle (13 men and seven women) from formalin-fixed (ten cadavers) and fresh cadavers (ten cadavers), with a mean age of 77.6 years. The entry point of the medial plantar nerve into the muscle was examined, followed by Sihler's staining to analyze the intramuscular distribution pattern and motor nerve ending location within the abductor hallucis muscle. Ultrasound- and palpation-guided injections were performed to verify the applicability of motor nerve ending location-based injections. The areas with the highest concentrations of nerve entry points and nerve endings were identified in the central portion of the muscle. Ultrasound- and palpation-guided injections were safely positioned near the densest nerve ending region of the muscle. These detailed anatomical data and injection methods would be beneficial for proceeding with safe and effective injection treatments using various analgesic agents to alleviate abductor hallucis muscle-associated pain disorders.
Collapse
Affiliation(s)
- You-Jin Choi
- Department of Anatomy, School of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Timm Joachim Filler
- Institute for Anatomy I, University Hospital Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Düsseldorf, Germany; (T.J.F.); (M.W.-V.)
| | - Michael Wolf-Vollenbröker
- Institute for Anatomy I, University Hospital Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Düsseldorf, Germany; (T.J.F.); (M.W.-V.)
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Hyung-Jin Lee
- Department of Anatomy, School of Medicine, CHA University, Seongnam 13448, Republic of Korea
| |
Collapse
|
2
|
Yi KH, Hu H, Lee JH, An MH, Lee HJ, Choi YJ, Kim HJ. Sihler's staining technique: How to and guidance for botulinum neurotoxin injection in human muscles. Clin Anat 2024; 37:169-177. [PMID: 37255275 DOI: 10.1002/ca.24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023]
Abstract
The Sihler's stain is a whole-mount nerve staining technique that allows visualization of the nerve distribution and permits mapping of the entire nerve supply patterns of the organs, skeletal muscles, mucosa, skin, and other structures that contain myelinated nerve fibers. Unlike conventional approaches, this technique does not require extensive dissection or slide preparation. To date, the Sihler's stain is the best tool for demonstrating the precise intramuscular branching and distribution patterns of skeletal muscles. The intramuscular neural distribution is used as a guidance tool for the application of botulinum neurotoxin injections. In this review, we have identified and summarized the ideal botulinum neurotoxin injection points for several human tissues.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul, Republic of Korea
| | - Hyewon Hu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam, South Korea
| | - Min Ho An
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - Hyung-Jin Lee
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - You-Jin Choi
- Department of Anatomy, College of Medicine, Konkuk University, Chungju, South Korea
| | - Hee-Jin Kim
- Division in Anatomy & Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
3
|
Yi KH, Lee HJ, Lee JH, An MH, Lee K, Hu H, Kim MS, Choi H, Kim HJ. Sonoanatomy of the platysmal bands: What causes the platysmal band? Surg Radiol Anat 2023; 45:1399-1404. [PMID: 37644238 DOI: 10.1007/s00276-023-03236-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The platysmal band is created by the platysma muscle, a thin superficial muscle that covers the entire neck and the lower part of the face. The platysmal band appears at the anterior and posterior borders of the muscle. To date, no definite pathophysiology has been established. Here, we observed a lack of knowledge of the anatomy of the platysma muscle using ultrasonography in this study. METHODS We conducted a descriptive, prospective study observing the platysmal band in resting and contraction states to reveal muscle changes. Twenty-four participants (aged 23-57 years) with anterior and posterior neck bands underwent ultrasonography in resting and contracted states. Ten cadavers were studied aged 67-85 years to measure the thickness of the platysma muscle at 12 points: horizontally (medial, middle, lateral) and vertically (inferior mandibular margin, hyoid bone, cricoid cartilage, superior margin of clavicle). RESULTS The anterior and posterior borders of the platysma muscle were thicker than the middle of the platysma muscle when in a contracted state, and the muscle also had a convex shape when contracted. The thickness of the platysma muscle was not significantly different over 12 points in the resting state. During contraction, the platysma muscles contracted in the medial and lateral margins of the muscle, which was more significant in the posterior bands. CONCLUSION The anterior and posterior platysmal bands are related to muscle thickness during contraction. These observations support the change in platysmal band treatment only at the anterior and posterior border of the muscle.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
- Maylin Clinic (Apgujeong), Seoul, Korea
| | - Hyung-Jin Lee
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam, 13120, Korea
| | - Min Ho An
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, South Korea
| | - Kangwoo Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyewon Hu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | | | | | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Yi KH, Lee JH, Hur HW, Lee HJ, Choi YJ, Kim HJ. Distribution of the intramuscular innervation of the triceps brachii: Clinical importance in the treatment of spasticity with botulinum neurotoxin. Clin Anat 2023; 36:964-970. [PMID: 36606364 DOI: 10.1002/ca.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
This study aimed to identify ideal sites for botulinum toxin injection by analyzing the intramuscular nerve patterns of the triceps brachii muscles. A modified Sihler's method was applied to the triceps brachii muscle (15 specimens), with long, medial, and lateral heads. The intramuscular arborization areas of the long, medial, and lateral heads of the triceps brachii muscle were measured as a percentage of the total distance from the midpoint of the olecranon (0%) to the anteroinferior point of the acromion (100%), by dividing the medial and lateral parts based on the line connecting the midpoint of the olecranon and the anteroinferior point of the acromion. Intramuscular arborization patterns were observed at the long head at two medial regions, proximally 30%-50% and distally 60%-70%; medial head of 30%-40%; and lateral head of 30%-60%. These results suggest that the treatment of spasticity of the triceps brachii muscles involves botulinum toxin injections in specific areas. The areas corresponding to the areas of maximum arborization are recommended as the most effective and safe points for botulinum toxin injection.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Wonju Public Health Center, Wonjusi, Republic of Korea
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hye-Won Hur
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hyung-Jin Lee
- Department of Anatomy, Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - You-Jin Choi
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yi KH, Lee JH, Hu HW, Park HJ, Bae H, Lee K, Kim HJ. Novel anatomical guidelines for botulinum neurotoxin injection in the mentalis muscle: a review. Anat Cell Biol 2023; 56:293-298. [PMID: 36796830 PMCID: PMC10520866 DOI: 10.5115/acb.22.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
The mentalis muscle is a paired muscle originating from the alveolar bone of the mandible. This muscle is the main target muscle for botulinum neurotoxin (BoNT) injection therapy, which aims to treat cobblestone chin caused by mentalis hyperactivity. However, a lack of knowledge on the anatomy of the mentalis muscle and the properties of BoNT can lead to side effects, such as mouth closure insufficiency and smile asymmetry due to ptosis of the lower lip after BoNT injection procedures. Therefore, we have reviewed the anatomical properties associated with BoNT injection into the mentalis muscle. An up-to-date understanding of the localization of the BoNT injection point according to mandibular anatomy leads to better injection localization into the mentalis muscle. Optimal injection sites have been provided for the mentalis muscle and a proper injection technique has been described. We have suggested optimal injection sites based on the external anatomical landmarks of the mandible. The aim of these guidelines is to maximize the effects of BoNT therapy by minimizing the deleterious effects, which can be very useful in clinical settings.
Collapse
Affiliation(s)
- Kyu-Ho Yi
- Wonju Public Health Center, Wonju, Korea
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Ji-Hyun Lee
- Department of Anatomy and Acupoint, College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Hye-Won Hu
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | | | - Hyungkyu Bae
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Kangwoo Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hee-Jin Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|