1
|
Loh TJ, Lim JJ, Jones CM, Dao HT, Tran MT, Baker DG, La Gruta NL, Reid HH, Rossjohn J. The molecular basis underlying T cell specificity towards citrullinated epitopes presented by HLA-DR4. Nat Commun 2024; 15:6201. [PMID: 39043656 PMCID: PMC11266596 DOI: 10.1038/s41467-024-50511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
CD4+ T cells recognising citrullinated self-epitopes presented by HLA-DRB1 bearing the shared susceptibility epitope (SE) are implicated in rheumatoid arthritis (RA). However, the underlying T cell receptor (TCR) determinants of epitope specificity towards distinct citrullinated peptide antigens, including vimentin-64cit59-71 and α-enolase-15cit10-22 remain unclear. Using HLA-DR4-tetramers, we examine the T cell repertoire in HLA-DR4 transgenic mice and observe biased TRAV6 TCR gene usage across these two citrullinated epitopes which matches with TCR bias previously observed towards the fibrinogen β-74cit69-81 epitope. Moreover, shared TRAV26-1 gene usage is evident in four α-enolase-15cit10-22 reactive T cells in three human samples. Crystal structures of mouse TRAV6+ and human TRAV26-1+ TCR-HLA-DR4 complexes presenting vimentin-64cit59-71 and α-enolase-15cit10-22, respectively, show three-way interactions between the TCR, SE, citrulline, and the basis for the biased selection of TRAV genes. Position 2 of the citrullinated epitope is a key determinant underpinning TCR specificity. Accordingly, we provide a molecular basis of TCR specificity towards citrullinated epitopes.
Collapse
MESH Headings
- Humans
- Mice, Transgenic
- HLA-DR4 Antigen/immunology
- HLA-DR4 Antigen/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/genetics
- Mice
- Animals
- Vimentin/immunology
- Vimentin/metabolism
- Vimentin/genetics
- CD4-Positive T-Lymphocytes/immunology
- Citrullination
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/metabolism
- Epitopes, T-Lymphocyte/immunology
- Citrulline/metabolism
- Citrulline/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Epitopes/immunology
- Crystallography, X-Ray
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- Tiing Jen Loh
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jia Jia Lim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hien Thy Dao
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mai T Tran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Daniel G Baker
- Janssen Research & Development, LLC, Horsham, Philadelphia, PA, USA
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Hugh H Reid
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
2
|
Ozanne J, Lewis M, Schwenzer A, Kurian D, Brady J, Pritchard D, McLachlan G, Farquharson C, Midwood KS. Extracellular matrix complexity in biomarker studies: a novel assay detecting total serum tenascin-C reveals different distribution to isoform-specific assays. Front Immunol 2023; 14:1275361. [PMID: 38077374 PMCID: PMC10703424 DOI: 10.3389/fimmu.2023.1275361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Serum biomarkers are the gold standard in non-invasive disease diagnosis and have tremendous potential as prognostic and theranostic tools for patient stratification. Circulating levels of extracellular matrix molecules are gaining traction as an easily accessible means to assess tissue pathology. However, matrix molecules are large, multimodular proteins that are subject to a vast array of post-transcriptional and post-translational modifications. These modifications often occur in a tissue- and/or disease-specific manner, generating hundreds of different variants, each with distinct biological roles. Whilst this complexity can offer unique insight into disease processes, it also has the potential to confound biomarker studies. Tenascin-C is a pro-inflammatory matrix protein expressed at low levels in most healthy tissues but elevated in, and associated with the pathogenesis of, a wide range of autoimmune diseases, fibrosis, and cancer. Analysis of circulating tenascin-C has been widely explored as a disease biomarker. Hundreds of different tenascin-C isoforms can be generated by alternative splicing, and this protein is also modified by glycosylation and citrullination. Current enzyme-linked immunosorbent assays (ELISA) are used to measure serum tenascin-C using antibodies, recognising sites within domains that are alternatively spliced. These studies, therefore, report only levels of specific isoforms that contain these domains, and studies on the detection of total tenascin-C are lacking. As such, circulating tenascin-C levels may be underestimated and/or biologically relevant isoforms overlooked. We developed a highly specific and sensitive ELISA measuring total tenascin-C down to 0.78ng/ml, using antibodies that recognise sites in constitutively expressed domains. In cohorts of people with different inflammatory and musculoskeletal diseases, levels of splice-specific tenascin-C variants were lower than and distributed differently from total tenascin-C. Neither total nor splice-specific tenascin-C levels correlated with the presence of autoantibodies to citrullinated tenascin-C in rheumatoid arthritis (RA) patients. Elevated tenascin-C was not restricted to any one disease and levels were heterogeneous amongst patients with the same disease. These data confirm that its upregulation is not disease-specific, instead suggest that different molecular endotypes or disease stages exist in which pathology is associated with, or independent of, tenascin-C. This immunoassay provides a novel tool for the detection of total tenascin-C that is critical for further biomarker studies. Differences between the distribution of tenascin-C variants and total tenascin-C have implications for the interpretation of studies using isoform-targeted assays. These data highlight the importance of assay design for the detection of multimodular matrix molecules and reveal that there is still much to learn about the intriguingly complex biological roles of distinct matrix proteoforms.
Collapse
Affiliation(s)
- James Ozanne
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Mel Lewis
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Anja Schwenzer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| | - Dominic Kurian
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeff Brady
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - David Pritchard
- R&D Department Axis-Shield Diagnostics, Axis-Shield Diagnostics Ltd, Dundee, United Kingdom
| | - Gerry McLachlan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Colin Farquharson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
3
|
Kang I, Hundhausen C, Evanko SP, Malapati P, Workman G, Chan CK, Rims C, Firestein GS, Boyle DL, MacDonald KM, Buckner JH, Wight TN. Crosstalk between CD4 T cells and synovial fibroblasts from human arthritic joints promotes hyaluronan-dependent leukocyte adhesion and inflammatory cytokine expression in vitro. Matrix Biol Plus 2022; 14:100110. [PMID: 35573706 PMCID: PMC9097711 DOI: 10.1016/j.mbplus.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/27/2022] Open
|
4
|
Location, location, location: how the tissue microenvironment affects inflammation in RA. Nat Rev Rheumatol 2021; 17:195-212. [PMID: 33526927 DOI: 10.1038/s41584-020-00570-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Current treatments for rheumatoid arthritis (RA) do not work well for a large proportion of patients, or at all in some individuals, and cannot cure or prevent this disease. One major obstacle to developing better drugs is a lack of complete understanding of how inflammatory joint disease arises and progresses. Emerging evidence indicates an important role for the tissue microenvironment in the pathogenesis of RA. Each tissue is made up of cells surrounded and supported by a unique extracellular matrix (ECM). These complex molecular networks define tissue architecture and provide environmental signals that programme site-specific cell behaviour. In the synovium, a main site of disease activity in RA, positional and disease stage-specific cellular diversity exist. Improved understanding of the architecture of the synovium from gross anatomy to the single-cell level, in parallel with evidence demonstrating how the synovial ECM is vital for synovial homeostasis and how dysregulated signals from the ECM promote chronic inflammation and tissue destruction in the RA joint, has opened up new ways of thinking about the pathogenesis of RA. These new ideas provide novel therapeutic approaches for patients with difficult-to-treat disease and could also be used in disease prevention.
Collapse
|
5
|
Dhaouadi S, Ben Abderrazek R, Loustau T, Abou-Faycal C, Ksouri A, Erne W, Murdamoothoo D, Mörgelin M, Kungl A, Jung A, Ledrappier S, Benlasfar Z, Bichet S, Chiquet-Ehrismann R, Hendaoui I, Orend G, Bouhaouala-Zahar B. Novel Human Tenascin-C Function-Blocking Camel Single Domain Nanobodies. Front Immunol 2021; 12:635166. [PMID: 33790905 PMCID: PMC8006918 DOI: 10.3389/fimmu.2021.635166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
The extracellular matrix (ECM) molecule Tenascin-C (TNC) is well-known to promote tumor progression by multiple mechanisms. However, reliable TNC detection in tissues of tumor banks remains limited. Therefore, we generated dromedary single-domain nanobodies Nb3 and Nb4 highly specific for human TNC (hTNC) and characterized the interaction with TNC by several approaches including ELISA, western blot, isothermal fluorescence titration and negative electron microscopic imaging. Our results revealed binding of both nanobodies to distinct sequences within fibronectin type III repeats of hTNC. By immunofluroescence and immunohistochemical imaging we observed that both nanobodies detected TNC expression in PFA and paraffin embedded human tissue from ulcerative colitis, solid tumors and liver metastasis. As TNC impairs cell adhesion to fibronectin we determined whether the nanobodies abolished this TNC function. Indeed, Nb3 and Nb4 restored adhesion of tumor and mesangial cells on a fibronectin/TNC substratum. We recently showed that TNC orchestrates the immune-suppressive tumor microenvironment involving chemoretention, causing tethering of CD11c+ myeloid/dendritic cells in the stroma. Here, we document that immobilization of DC2.4 dendritic cells by a CCL21 adsorbed TNC substratum was blocked by both nanobodies. Altogether, our novel TNC specific nanobodies could offer valuable tools for detection of TNC in the clinical practice and may be useful to inhibit the immune-suppressive and other functions of TNC in cancer and other diseases.
Collapse
Affiliation(s)
- Sayda Dhaouadi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Rahma Ben Abderrazek
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Thomas Loustau
- Université Strasbourg, INSERM U1109 – The Tumor Microenvironment group, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Chérine Abou-Faycal
- Université Strasbourg, INSERM U1109 – The Tumor Microenvironment group, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ayoub Ksouri
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - William Erne
- Université Strasbourg, INSERM U1109 – The Tumor Microenvironment group, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Devadarssen Murdamoothoo
- Université Strasbourg, INSERM U1109 – The Tumor Microenvironment group, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | | | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Karl Franzens University Graz, Graz, Austria
- Antagonis Biotherapeutics GmbH, Graz, Austria
| | - Alain Jung
- Tumor Bank Centre Paul Strauss, Strasbourg, France
| | | | - Zakaria Benlasfar
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Sandrine Bichet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Ismaïl Hendaoui
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gertraud Orend
- Université Strasbourg, INSERM U1109 – The Tumor Microenvironment group, Hôpital Civil, Institut d'Hématologie et d'Immunologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Faculté de Médecine de Tunis, Université Tunis el Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Song J, Schwenzer A, Wong A, Turcinov S, Rims C, Martinez LR, Arribas-Layton D, Gerstner C, Muir VS, Midwood KS, Malmström V, James EA, Buckner JH. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight 2021; 6:145217. [PMID: 33507879 PMCID: PMC8021118 DOI: 10.1172/jci.insight.145217] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/21/2021] [Indexed: 01/20/2023] Open
Abstract
Tenascin-C (TNC), an extracellular matrix protein that has proinflammatory properties, is a recently described antibody target in rheumatoid arthritis (RA). In this study, we utilized a systematic discovery process and identified 5 potentially novel citrullinated TNC (cit-TNC) T cell epitopes. CD4+ T cells specific for these epitopes were elevated in the peripheral blood of subjects with RA and showed signs of activation. Cit-TNC–specific T cells were also present among synovial fluid T cells and secreted IFN-γ. Two of these cit-TNC T cell epitopes were also recognized by antibodies within the serum and synovial fluid of individuals with RA. Detectable serum levels of cit-TNC–reactive antibodies were prevalent among subjects with RA and positively associated with cyclic citrullinated peptide (CCP) reactivity and the HLA shared epitope. Furthermore, cit-TNC–reactive antibodies were correlated with rheumatoid factor and elevated in subjects with a history of smoking. This work confirms cit-TNC as an autoantigen that is targeted by autoreactive CD4+ T cells and autoantibodies in patients with RA. Furthermore, our findings raise the possibility that coinciding epitopes recognized by both CD4+ T cells and B cells have the potential to amplify autoimmunity and promote the development and progression of RA.
Collapse
Affiliation(s)
- Jing Song
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Alicia Wong
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sara Turcinov
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Cliff Rims
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lorena Rodriguez Martinez
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Christina Gerstner
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Virginia S Muir
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Eddie A James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
7
|
Lopez-Oliva I, de Pablo P, Dietrich T, Chapple I. Gums and joints: is there a connection? Part two: the biological link. Br Dent J 2019; 227:611-617. [PMID: 31605072 DOI: 10.1038/s41415-019-0723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) and periodontitis (PD) are inflammatory diseases characterised by an exacerbated immune-inflammatory reaction that leads to the destruction of bone and other connective tissues that share numerous similarities. Although a significant and independent association between these two conditions has been described, the pathophysiological processes that may explain this relationship remain unknown and multiple theories have been proposed. This review presents the most important theories currently proposed to explain the biological link between RA and PD.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Paola de Pablo
- Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - Iain Chapple
- Periodontal Research Group, Birmingham Dental School, 5 Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
8
|
Cutolo M, Soldano S, Paolino S. Potential roles for tenascin in (very) early diagnosis and treatment of rheumatoid arthritis. Ann Rheum Dis 2019; 79:e42. [DOI: 10.1136/annrheumdis-2019-215063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/20/2019] [Indexed: 11/04/2022]
|
9
|
Boeters DM, Trouw LA, van der Helm-van Mil AHM, van Steenbergen HW. Does information on novel identified autoantibodies contribute to predicting the progression from undifferentiated arthritis to rheumatoid arthritis: a study on anti-CarP antibodies as an example. Arthritis Res Ther 2018; 20:94. [PMID: 29724250 PMCID: PMC5934835 DOI: 10.1186/s13075-018-1591-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of autoantibodies is considered an important characteristic of rheumatoid arthritis (RA); therefore, both anticitrullinated protein antibodies (ACPA) and rheumatoid factor (RF) are included in the 2010 classification criteria for rheumatoid arthritis (RA). However, a considerable number of RA patients lack both these autoantibodies. Recently, several novel autoantibodies have been identified but their value for the classification of RA patients is unclear. Therefore, we studied the value of novel autoantibodies using the presence of anticarbamylated protein (anti-CarP) antibodies as an example for predicting RA development in patients with undifferentiated arthritis (UA). METHODS There were 1352 UA patients included in the Leiden Early Arthritis Clinic (EAC) cohort according to the 1987 criteria. When the 2010 criteria were used, there were 838 UA patients. Of these, we evaluated whether they fulfilled the 1987 or 2010 criteria after 1 year, respectively. Logistic regression analyses were performed with RA as outcome and ACPA, RF, and anti-CarP antibodies as predictors. Analyses were repeated after stratification for ACPA and RF. RESULTS Thirty-three percent of the 1987-UA patients and 6% of the 2010-UA patients progressed to RA during the first year of follow-up. For the 1987-UA patients, anti-CarP antibodies were associated with progression to RA, an association which remained when a correction was made for the presence of ACPA and RF (odds ratio (OR) 1.7, 95% confidence interval (CI) 1.2-2.4). After stratification for ACPA and RF, anti-CarP antibodies were associated with progression to RA only for ACPA- and RF-negative patients (OR 2.1, 95% CI 1.3-3.7). For the 2010-UA patients, anti-CarP antibodies were associated with progression to RA; however, they were not when a correction was made for the presence of ACPA and RF (OR 0.8, 95% CI 0.3-2.1). CONCLUSIONS Our finding that anti-CarP antibodies have no additional value when RA is defined according to the 2010 criteria might be inherent to the composition of the 2010 criteria and therefore might also apply to other novel autoantibodies. Potentially it would be interesting to evaluate other, non-autoantibody biomarkers.
Collapse
Affiliation(s)
- Debbie M Boeters
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands.
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette H M van der Helm-van Mil
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands.,Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hanna W van Steenbergen
- Department of Rheumatology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, the Netherlands
| |
Collapse
|
10
|
Marzeda AM, Midwood KS. Internal Affairs: Tenascin-C as a Clinically Relevant, Endogenous Driver of Innate Immunity. J Histochem Cytochem 2018; 66:289-304. [PMID: 29385356 PMCID: PMC5958381 DOI: 10.1369/0022155418757443] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
To protect against danger, the innate immune system must promptly and accurately sense alarm signals, and mount an appropriate response to restore homeostasis. One endogenous trigger of immunity is tenascin-C, a large hexameric protein of the extracellular matrix. Upregulated upon tissue injury and cellular stress, tenascin-C is expressed during inflammation and tissue remodeling, where it influences cellular behavior by interacting with a multitude of molecular targets, including other matrix components, cell surface proteins, and growth factors. Here, we discuss how these interactions confer upon tenascin-C distinct immunomodulatory capabilities that make this matrix molecule necessary for efficient tissue repair. We also highlight in vivo studies that provide insight into the consequences of misregulated tenascin-C expression on inflammation and fibrosis during a wide range of inflammatory diseases. Finally, we examine how its unique expression pattern and inflammatory actions make tenascin-C a viable target for clinical exploitation in both diagnostic and therapeutic arenas.
Collapse
Affiliation(s)
- Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Li J, Liu Y, Wang Y, Xu W. Expression of tenascin-C in a rat vocal fold injury model and its regulation of fibroblasts. Laryngoscope 2018; 128:E316-E322. [PMID: 29572861 DOI: 10.1002/lary.27164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/14/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVES/HYPOTHESIS Tenascin-C (Tnc) is an extracellular matrix (ECM) glycoprotein that plays a vital role in wound healing and fibrotic disease. Tnc is highly upregulated soon after vocal fold injury, but its function in the vocal fold has not yet been defined. In this study, we investigated Tnc expression in a rat vocal fold injury model in vivo and its roles in fibroblasts in vitro. STUDY DESIGN In vivo and in vitro. METHODS Tnc mRNA and protein expression levels were quantified on days 3, 7, 14, 28, and 56 after vocal fold injury in Sprague-Dawley rats. In vitro, immunocytochemistry, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed in primary rat vocal fold fibroblasts following Tnc or transforming growth factor (TGF)-β1 stimulation to investigate the phenotypic effects. RESULTS Tnc mRNA and protein expression was upregulated dramatically on days 3 and 7 after injury, and significant differences were observed by qRT-PCR (P < .01). In vitro, Tnc significantly stimulated the migration of primary vocal fold fibroblasts. Following incubation with Tnc for 72 hours, α-smooth muscle actin, collagen I, and fibronectin expression was significantly upregulated (P < .05). TGF-β1 increased Tnc expression in a time-dependent manner, and a mothers against decapentaplegic homolog 3 (SMAD3) inhibitor attenuated this TGF-β1-induced stimulation. CONCLUSIONS Tnc was highly upregulated during the early postinjury period in vivo and promoted vocal fold fibroblast migration, transdifferentiation, and ECM protein synthesis in vitro. Tnc was induced by TGF-β1 in a SMAD3-dependent manner. Transient expression of Tnc is likely to promote regeneration, but its potential role in fibrosis requires further study. LEVEL OF EVIDENCE NA Laryngoscope, 128:E316-E322, 2018.
Collapse
Affiliation(s)
- Juan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, Beijing, China
| | - Yiqiong Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yiming Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology-Head and Neck Surgery, Ministry of Education of China, Beijing, China
| |
Collapse
|
12
|
Schwenzer A, Quirke A, Marzeda AM, Wong A, Montgomery AB, Sayles HR, Eick S, Gawron K, Chomyszyn‐Gajewska M, Łazarz‐Bartyzel K, Davis S, Potempa J, Kessler BM, Fischer R, Venables PJ, Payne JB, Mikuls TR, Midwood KS. Association of Distinct Fine Specificities of Anti-Citrullinated Peptide Antibodies With Elevated Immune Responses to Prevotella intermedia in a Subgroup of Patients With Rheumatoid Arthritis and Periodontitis. Arthritis Rheumatol 2017; 69:2303-2313. [PMID: 29084415 PMCID: PMC5711558 DOI: 10.1002/art.40227] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In addition to the long-established link with smoking, periodontitis (PD) is a risk factor for rheumatoid arthritis (RA). This study was undertaken to elucidate the mechanism by which PD could induce antibodies to citrullinated peptides (ACPAs), by examining the antibody response to a novel citrullinated peptide of cytokeratin 13 (CK-13) identified in gingival crevicular fluid (GCF), and comparing the response to 4 other citrullinated peptides in patients with RA who were well-characterized for PD and smoking. METHODS The citrullinomes of GCF and periodontal tissue from patients with PD were mapped by mass spectrometry. ACPAs of CK13 (cCK13), tenascin-C (cTNC5), vimentin (cVIM), α-enolase (CEP-1), and fibrinogen β (cFIBβ) were examined by enzyme-linked immunosorbent assay in patients with RA (n = 287) and patients with osteoarthritis (n = 330), and cross-reactivity was assessed by inhibition assays. RESULTS A novel citrullinated peptide cCK13-1 (444 TSNASGR-Cit-TSDV-Cit-RP458 ) identified in GCF exhibited elevated antibody responses in RA patients (24%). Anti-cCK13-1 antibody levels correlated with anti-cTNC5 antibody levels, and absorption experiments confirmed this was not due to cross-reactivity. Only anti-cCK13-1 and anti-cTNC5 were associated with antibodies to the periodontal pathogen Prevotella intermedia (P = 0.05 and P = 0.001, respectively), but not with antibodies to Porphyromonas gingivalis arginine gingipains. Levels of antibodies to CEP-1, cFIBβ, and cVIM correlated with each other, and with smoking and shared epitope risk factors in RA. CONCLUSION This study identifies 2 groups of ACPA fine specificities associated with different RA risk factors. One is predominantly linked to smoking and shared epitope, and the other links anti-cTNC5 and cCK13-1 to infection with the periodontal pathogen P intermedia.
Collapse
Affiliation(s)
| | | | - Anna M. Marzeda
- University of Oxford, Oxford, UK, and Jagiellonian UniversityKrakowPoland
| | | | | | | | | | | | | | | | | | - Jan Potempa
- Jagiellonian University, Krakow, Poland, and University of LouisvilleLouisvilleKentucky
| | | | | | | | | | - Ted R. Mikuls
- University of Nebraska Medical Center and Nebraska‐Western Iowa Health Care SystemOmaha
| | | |
Collapse
|
13
|
Giblin SP, Murdamoothoo D, Deligne C, Schwenzer A, Orend G, Midwood KS. How to detect and purify tenascin-C. Methods Cell Biol 2017; 143:371-400. [PMID: 29310788 DOI: 10.1016/bs.mcb.2017.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular matrix molecule tenascin-C (TNC) was discovered over 30 years ago, and its tightly regulated pattern of expression since sparked keen interest in the scientific community. In adult tissues, TNC expression is restricted to specific niches and areas of active remodeling or high mechanical strain. However, while most healthy tissues contain little TNC, its transient expression upon cellular stress or tissue injury helps to mediate repair and restore homeostasis. Persistent expression of TNC is associated with chronic inflammation, fibrosis, and cancer, where methods for its detection are emerging as a reliable means to predict disease onset, prognosis, and response to treatment. Because studying the expression of this large matrix molecule is not always straightforward, here we describe basic techniques to examine tissue levels of TNC mRNA and protein. We also describe methods for purifying recombinant TNC, knocking down its expression, and creating cell-derived matrices with or without TNC within.
Collapse
Affiliation(s)
- Sean P Giblin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Devadarssen Murdamoothoo
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Claire Deligne
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Gertraud Orend
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|