1
|
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage 2024; 32:1220-1234. [PMID: 38876436 DOI: 10.1016/j.joca.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
OBJECTIVE To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA). METHOD Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity. RESULTS The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points. Microstructural changes of the subarticular spongiosa are comprehensively described; those of the subchondral bone plate are not. In mouse models, global subchondral bone alterations are unidirectional, involving an advancing sclerosis of the trabecular structure over time. In rats, biphasic subchondral bone alterations begin with an osteopenic degeneration and loss of subchondral trabeculae, progressing to a late sclerosis of the entire subchondral bone. Rat models, independently from the applied technique, relatively faithfully mirror the early bone loss detected in larger animals, and the late subchondral bone sclerosis observed in human advanced OA. CONCLUSION Mice and rats allow us to study the microstructural consequences of compromising meniscus integrity at high temporal detail. Thickening of the subchondral bone plate, an early loss of thinner subarticular trabecular elements, followed by a subsequent sclerosis of the entire subchondral bone are all important and reliable hallmarks that occur in parallel with the advancing articular cartilage degeneration. Thoughtful decisions on the study design, laterality, selection of controls and volumes of interest are crucial to obtain meaningful data.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
2
|
Tao L, Yang K, Wang K, Yang Y. NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Sci Rep 2024; 14:19877. [PMID: 39191890 DOI: 10.1038/s41598-024-70991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disease associated with the aging of the population, and it reduces the quality of life of patients. It is characterized by the destruction of articular cartilage and the secretion of inflammatory cytokines. Owing to the unclear pathogenesis of OA, current treatment methods have significant limitations. Oxidative stress has been revealed to play an important role in the development of OA. Our experiments indicated that the levels of GSH decreased and the level of MDA increased in chondrocytes, which induced ferroptosis in chondrocytes in OA. We also revealed that ferroptosis was the main mechanism of cartilage destruction caused by the addition of the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin-1. NOX1 is the main modulator of oxidative stress by increasing the generation of reactive oxidative species (ROS). We suppressed the expression of NOX1 in chondrocytes through cell transfection. The expression of collagen II and MMP13, and the secretion of IL-1β and TNF-α were reversed. An increase in the mitochondrial membrane potential and a decrease in the level of intracellular ROS indicate an improvement in oxidative damage. Additionally, we determined the effect of the Nrf2/HO-1 pathway on NOX1-mediated chondrocyte injury. We found that NOX1 inhibited the expression of Nrf2/HO-1, but the activation of Nrf2 improved the oxidative damage to chondrocytes in vivo and vitro. This study revealed that NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Our findings contribute to revealing the pathogenesis of OA, providing targets for drug design and optimizing the clinical treatment of OA.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Ke Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Sports Medicine and Joint Surgury/Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
3
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Yang JH, Jeon J, Yang S. BRD2-specific inhibitor, BBC0403, inhibits the progression of osteoarthritis pathogenesis in osteoarthritis-induced C57BL/6 male mice. Br J Pharmacol 2024; 181:2528-2544. [PMID: 38600628 DOI: 10.1111/bph.16359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND AND PURPOSE The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 μM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Jae-Hyun Yang
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute Harvard Medical School (HMS), Boston, Massachusetts, USA
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
4
|
Fan F, Yang C, Piao E, Shi J, Zhang J. Mechanisms of chondrocyte regulated cell death in osteoarthritis: Focus on ROS-triggered ferroptosis, parthanatos, and oxeiptosis. Biochem Biophys Res Commun 2024; 705:149733. [PMID: 38442446 DOI: 10.1016/j.bbrc.2024.149733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Osteoarthritis (OA) is a common chronic inflammatory degenerative disease. Since chondrocytes are the only type of cells in cartilage, their survival is critical for maintaining cartilage morphology. This review offers a comprehensive analysis of how reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide, hydroxyl radicals, nitric oxide, and their derivatives, affect cartilage homeostasis and trigger several novel modes of regulated cell death, including ferroptosis, parthanatos, and oxeiptosis, which may play roles in chondrocyte death and OA development. Moreover, we discuss potential therapeutic strategies to alleviate OA by scavenging ROS and provide new insight into the research and treatment of the role of regulated cell death in OA.
Collapse
Affiliation(s)
- Fangyang Fan
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Cheng Yang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Enran Piao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jia Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| | - Juntao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
5
|
Roelofs AJ, De Bari C. Osteoarthritis year in review 2023: Biology. Osteoarthritis Cartilage 2024; 32:148-158. [PMID: 37944663 DOI: 10.1016/j.joca.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Great progress continues to be made in our understanding of the multiple facets of osteoarthritis (OA) biology. Here, we review the major advances in this field and progress towards therapy development over the past year, highlighting a selection of relevant published literature from a PubMed search covering the year from the end of April 2022 to the end of April 2023. The selected articles have been arranged in themes. These include 1) molecular regulation of articular cartilage and implications for OA, 2) mechanisms of subchondral bone remodelling, 3) role of synovium and inflammation, 4) role of age-related changes including cartilage matrix stiffening, cellular senescence, mitochondrial dysfunction, metabolic dysfunction, and impaired autophagy, and 5) peripheral mechanisms of OA pain. Progress in the understanding of the cellular and molecular mechanisms responsible for the multiple aspects of OA biology is unravelling novel therapeutic targets for disease modification.
Collapse
Affiliation(s)
- Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
6
|
Lee H, Nam J, Jang H, Park YS, Son MH, Lee IH, Eyun SI, Jeon J, Yang S. Novel molecule BBC0901 inhibits BRD4 and acts as a catabolic regulator in the pathogenesis of osteoarthritis. Biomed Pharmacother 2023; 166:115426. [PMID: 37666177 DOI: 10.1016/j.biopha.2023.115426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jiho Nam
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Hahyeong Jang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Young-Sik Park
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Min-Hee Son
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - In-Hyun Lee
- Benobio Co., Ltd., Gyeonggi-do 13494, Republic of Korea.
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jimin Jeon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|