1
|
Mikalová L, Janečková K, Nováková M, Strouhal M, Čejková D, Harper KN, Šmajs D. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Iraq B: A subpopulation of bejel treponemes contains full-length tprF and tprG genes similar to those present in T. p. subsp. pertenue strains. PLoS One 2020; 15:e0230926. [PMID: 32236138 PMCID: PMC7112178 DOI: 10.1371/journal.pone.0230926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Treponema pallidum subsp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). Until now, only a single TEN strain, Bosnia A, has been completely sequenced. The only other laboratory TEN strain available, Iraq B, was isolated in Iraq in 1951 by researchers from the US Centers for Disease Control and Prevention. In this study, the complete genome of the Iraq B strain was amplified as overlapping PCR products and sequenced using the pooled segment genome sequencing method and Illumina sequencing. Total average genome sequencing coverage reached 3469×, with a total genome size of 1,137,653 bp. Compared to the genome sequence of Bosnia A, a set of 37 single nucleotide differences, 4 indels, 2 differences in the number of tandem repetitions, and 18 differences in the length of homopolymeric regions were found in the Iraq B genome. Moreover, the tprF and tprG genes that were previously found deleted in the genome of the TEN Bosnia A strain (spanning 2.3 kb in length) were present in a subpopulation of TEN Iraq B and Bosnia A microbes, and their sequence was highly similar to those found in T. p. subsp. pertenue strains, which cause the disease yaws. The genome sequence of TEN Iraq B revealed close genetic relatedness between both available bejel-causing laboratory strains (i.e., Iraq B and Bosnia A) and also genetic variability within the bejel treponemes comparable to that found within yaws- or syphilis-causing strains. In addition, genetic relatedness to TPE strains was demonstrated by the sequence of the tprF and tprG genes found in subpopulations of both TEN Iraq B and Bosnia A. The loss of the tprF and tprG genes in most TEN microbes suggest that TEN genomes have been evolving via the loss of genomic regions, a phenomenon previously found among the treponemes causing both syphilis and rabbit syphilis.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Klára Janečková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Kristin N. Harper
- Department of Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
2
|
Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA. Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea. PLoS Negl Trop Dis 2017; 11:e0006113. [PMID: 29281641 PMCID: PMC5760108 DOI: 10.1371/journal.pntd.0006113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/09/2018] [Accepted: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yaws is a neglected tropical disease, caused by Treponema pallidum subsp. pertenue. The disease causes chronic lesions, primarily in young children living in remote villages in tropical climates. As part of a global yaws eradication campaign initiated by the World Health Organization, we sought to develop and evaluate a molecular typing method to distinguish different strains of T. pallidum subsp. pertenue for disease control and epidemiological purposes. METHODS AND PRINCIPAL FINDINGS Published genome sequences of strains of T. pallidum subsp. pertenue and pallidum were compared to identify polymorphic genetic loci among the strains. DNA from a number of existing historical Treponema isolates, as well as a subset of samples from yaws patients collected in Lihir Island, Papua New Guinea, were analyzed using these targets. From these data, three genes (tp0548, tp0136 and tp0326) were ultimately selected to give a high discriminating capability among the T. pallidum subsp. pertenue samples tested. Intragenic regions of these three target genes were then selected to enhance the discriminating capability of the typing scheme using short readily amplifiable loci. This 3-gene multilocus sequence typing (MLST) method was applied to existing historical human yaws strains, the Fribourg-Blanc simian isolate, and DNA from 194 lesion swabs from yaws patients on Lihir Island, Papua New Guinea. Among all samples tested, fourteen molecular types were identified, seven of which were found in patient samples and seven among historical isolates or DNA. Three types (JG8, TD6, and SE7) were predominant on Lihir Island. CONCLUSIONS This MLST approach allows molecular typing and differentiation of yaws strains. This method could be a useful tool to complement epidemiological studies in regions where T. pallidum subsp. pertenue is prevalent with the overall goals of improving our understanding of yaws transmission dynamics and helping the yaws eradication campaign to succeed.
Collapse
Affiliation(s)
- Charmie Godornes
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Alyssa E. Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Oriol Mitja
- Barcelona Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain
- Division of Public Health, School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Lihir Medical Center, International SOS-Newcrest Mining, Lihir Island, Papua New Guinea
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis 2017; 11:e0005894. [PMID: 28886021 PMCID: PMC5607219 DOI: 10.1371/journal.pntd.0005894] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/20/2017] [Accepted: 08/22/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Treponema pallidum subsp. pertenue (TPE) is the causative agent of yaws, a multi-stage disease, endemic in tropical regions of Africa, Asia, Oceania, and South America. To date, four TPE strains have been completely sequenced including three TPE strains of human origin (Samoa D, CDC-2, and Gauthier) and one TPE strain (Fribourg-Blanc) isolated from a baboon. All TPE strains are highly similar to T. pallidum subsp. pallidum (TPA) strains. The mutation rate in syphilis and related treponemes has not been experimentally determined yet. METHODOLOGY/PRINCIPAL FINDINGS Complete genomes of two TPE strains, CDC 2575 and Ghana-051, that infected patients in Ghana and were isolated in 1980 and 1988, respectively, were sequenced and analyzed. Both strains had identical consensus genome nucleotide sequences raising the question whether TPE CDC 2575 and Ghana-051 represent two different strains. Several lines of evidence support the fact that both strains represent independent samples including regions showing intrastrain heterogeneity (13 and 5 intrastrain heterogeneous sites in TPE Ghana-051 and TPE CDC 2575, respectively). Four of these heterogeneous sites were found in both genomes but the frequency of alternative alleles differed. The identical consensus genome sequences were used to estimate the upper limit of the yaws treponeme evolution rate, which was 4.1 x 10-10 nucleotide changes per site per generation. CONCLUSIONS/SIGNIFICANCE The estimated upper limit for the mutation rate of TPE was slightly lower than the mutation rate of E. coli, which was determined during a long-term experiment. Given the known diversity between TPA and TPE genomes and the assumption that both TPA and TPE have a similar mutation rate, the most recent common ancestor of syphilis and yaws treponemes appears to be more than ten thousand years old and likely even older.
Collapse
|
4
|
Staudová B, Strouhal M, Zobaníková M, Cejková D, Fulton LL, Chen L, Giacani L, Centurion-Lara A, Bruisten SM, Sodergren E, Weinstock GM, Smajs D. Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: the genome is related to yaws treponemes but contains few loci similar to syphilis treponemes. PLoS Negl Trop Dis 2014; 8:e3261. [PMID: 25375929 PMCID: PMC4222731 DOI: 10.1371/journal.pntd.0003261] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/10/2014] [Indexed: 02/03/2023] Open
Abstract
Background T. pallidum subsp. endemicum (TEN) is the causative agent of bejel (also known as endemic syphilis). Clinical symptoms of syphilis and bejel are overlapping and the epidemiological context is important for correct diagnosis of both diseases. In contrast to syphilis, caused by T. pallidum subsp. pallidum (TPA), TEN infections are usually spread by direct contact or contaminated utensils rather than by sexual contact. Bejel is most often seen in western Africa and in the Middle East. The strain Bosnia A was isolated in 1950 in Bosnia, southern Europe. Methodology/Principal Findings The complete genome of the Bosnia A strain was amplified and sequenced using the pooled segment genome sequencing (PSGS) method and a combination of three next-generation sequencing techniques (SOLiD, Roche 454, and Illumina). Using this approach, a total combined average genome coverage of 513× was achieved. The size of the Bosnia A genome was found to be 1,137,653 bp, i.e. 1.6–2.8 kbp shorter than any previously published genomes of uncultivable pathogenic treponemes. Conserved gene synteny was found in the Bosnia A genome compared to other sequenced syphilis and yaws treponemes. The TEN Bosnia A genome was distinct but very similar to the genome of yaws-causing T. pallidum subsp. pertenue (TPE) strains. Interestingly, the TEN Bosnia A genome was found to contain several sequences, which so far, have been uniquely identified only in syphilis treponemes. Conclusions/Significance The genome of TEN Bosnia A contains several sequences thought to be unique to TPA strains; these sequences very likely represent remnants of recombination events during the evolution of TEN treponemes. This finding emphasizes a possible role of repeated horizontal gene transfer between treponemal subspecies in shaping the Bosnia A genome. Uncultivable treponemes represent bacterial species and subspecies that are obligate pathogens of humans and animals causing diseases with distinct clinical manifestations. Treponema pallidum subsp. pallidum causes sexually transmitted syphilis, a multistage disease characterized in humans by localized, disseminated, and chronic forms of infection, whereas Treponema pallidum subsp. pertenue (agent of yaws) and Treponema pallidum subsp. endemicum (agent of bejel) cause milder, non-venereally transmitted diseases affecting skin, bones and joints. The genetic basis of the pathogenesis and evolution of these microorganisms are still unknown. In this study, a high quality whole genome sequence of the T. pallidum subsp. endemicum Bosnia A strain was obtained using a combination of next-generation sequencing approaches and compared to the genomes of available uncultivable pathogenic treponemes. Relative to all known genomes of Treponema pallidum subspecies, no major genome rearrangements were found in the Bosnia A. The Bosnia A strain clustered with other yaws-causing strains, while syphilis-causing strains clustered separately. In general, the Bosnia A genome showed similar genetic characteristics to yaws treponemes but also contained several sequences thought to be unique to syphilis-causing strains. This finding suggests a possible role of repeated horizontal gene transfer between treponemal subspecies in shaping the Bosnia A genome.
Collapse
Affiliation(s)
- Barbora Staudová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marie Zobaníková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Darina Cejková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lucinda L Fulton
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lei Chen
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Arturo Centurion-Lara
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | | | - Erica Sodergren
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - George M Weinstock
- The Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Abstract
The agents of human treponematoses include four closely related members of the genus Treponema: three subspecies of Treponema pallidum plus Treponema carateum. T. pallidum subsp. pallidum causes venereal syphilis, while T. pallidum subsp. pertenue, T. pallidum subsp. endemicum, and T. carateum are the agents of the endemic treponematoses yaws, bejel (or endemic syphilis), and pinta, respectively. All human treponematoses share remarkable similarities in pathogenesis and clinical manifestations, consistent with the high genetic and antigenic relatedness of their etiological agents. Distinctive features have been identified in terms of age of acquisition, most common mode of transmission, and capacity for invasion of the central nervous system and fetus, although the accuracy of these purported differences is debated among investigators and no biological basis for these differences has been identified to date. In 2012, the World Health Organization (WHO) officially set a goal for yaws eradication by 2020. This challenging but potentially feasible endeavor is favored by the adoption of oral azithromycin for mass treatment and the currently focused distribution of yaws and endemic treponematoses and has revived global interest in these fascinating diseases and their causative agents.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sheila A. Lukehart
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Abstract
Improved understanding of the differential diagnosis of endemic treponematoses is needed to inform clinical practice and to ensure the best outcome for a new global initiative for the eradication of yaws, bejel, and pinta. Traditionally, the human treponematoses have been differentiated based upon their clinical manifestations and epidemiologic characteristics because the etiologic agents are indistinguishable in the laboratory. Serological tests are still considered standard laboratory methods for the diagnosis of endemic treponematoses and new rapid point-of-care treponemal tests have become available which are extremely useful in low-resource settings. In the past ten years, there has been an increasing effort to apply polymerase chain reaction to treponematoses and whole genome fingerprinting techniques have identified genetic signatures that can differentiate the existing treponemal strains; however, definitive diagnosis is also hampered by widespread unavailability of molecular diagnostics. We review the dilemmas in the diagnosis of endemic treponematoses, and advances in the discovery of new diagnostic tools.
Collapse
Affiliation(s)
- Oriol Mitjà
- Barcelona Centre for International Health Research, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Lihir Medical Centre-InternationalSOS, Lihir Island, Papua New Guinea
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Quique Bassat
- Lihir Medical Centre-InternationalSOS, Lihir Island, Papua New Guinea
| |
Collapse
|
7
|
Centurion-Lara A, Molini BJ, Godornes C, Sun E, Hevner K, Van Voorhis WC, Lukehart SA. Molecular differentiation of Treponema pallidum subspecies. J Clin Microbiol 2006; 44:3377-80. [PMID: 16954278 PMCID: PMC1594706 DOI: 10.1128/jcm.00784-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/12/2006] [Accepted: 06/26/2006] [Indexed: 11/20/2022] Open
Abstract
Treponema pallidum includes three subspecies of antigenically highly related treponemes. These organisms cause clinically distinct diseases and cannot be distinguished by any existing test. In this report, genetic signatures are identified in two tpr genes which, in combination with the previously published signature in the 5' flanking region of the tpp15 gene, can differentiate the T. pallidum subspecies, as well as a simian treponeme.
Collapse
|
8
|
Noordhoek GT, Wieles B, van der Sluis JJ, van Embden JD. Polymerase chain reaction and synthetic DNA probes: a means of distinguishing the causative agents of syphilis and yaws? Infect Immun 1990; 58:2011-3. [PMID: 2187816 PMCID: PMC258761 DOI: 10.1128/iai.58.6.2011-2013.1990] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Synthetic DNA probes specific for either the tpf-1 gene of Treponema pallidum subsp. pallidum Nichols or the tyf-1 gene of Treponema pallidum subsp. pertenue CDC 2575 were used for hybridization with in vitro-amplified chromosomal DNAs of 10 different Treponema isolates. tpf-1 and tyf-1 differ only in one nucleotide at residue 123, and three of four syphilis strains were of the Nichols type, whereas five of six yaws strains were of the CDC 2575 type, indicating that the nucleotide at position 123 of the tpf-1 or tyf-1 gene is not a definitive trait for either T. pallidum subspecies.
Collapse
Affiliation(s)
- G T Noordhoek
- Laboratory of Bacteriology, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands
| | | | | | | |
Collapse
|