1
|
Mishra-Sopori V, Khosla I, Khan S, Kataria D, Prabhudesai P, Chandane P, Sehgal K, Bodhanwala M, Pandrowala A, Hiwarkar P. Restitutio ad integrum: Rescuing the Alveolar Macrophage Function with HSCT in Pulmonary Alveolar Proteinosis Due to CSF2Rα Deficiency. J Clin Immunol 2024; 45:52. [PMID: 39621143 DOI: 10.1007/s10875-024-01844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Hereditary pulmonary alveolar proteinosis (hPAP) is a rare lung-related primary immunodeficiency. In hPAP, variants of genes encoding the heterodimeric GM-CSF receptor alpha or beta-chains (CSF2Rα, CSF2Rβ) lead to perturbations in GM-CSF signalling. These perturbations impair the scavenging function of pulmonary alveolar macrophages leading to accumulation of surfactant proteins and lipids within the alveoli. The replacement of defective pulmonary alveolar macrophages can be achieved with allogeneic hematopoietic stem cell transplantation. However, previous reports highlight undesirable pulmonary outcomes associated with this therapeutic approach. We report a 4-year-old developmentally normal girl born of second-degree consanguineous marriage diagnosed with severe form of CSFRα-deficient PAP. She required recurrent whole lung lavage and hence was treated with allogeneic hematopoietic stem cell transplantation. A reduced toxicity treosulfan-based myeloablative regimen with alemtuzumab serotherapy was used for conditioning. Ciclosporin, mycophenolate mofetil and FAM (fluticasone inhaler, azithromycin, montelukast) were used to prevent graft-versus-host disease and immune-related complications of lung. Her post-transplant course was uneventful with full donor chimerism and complete resolution of symptoms. We demonstrate for the first time in a case of severe CSF2Rα-deficient PAP, the successful use of hematopoietic stem cell transplantation as a primary curative treatment, restoring normal lungs both anatomically and functionally. The case report provides evidence for considering allogeneic hematopoietic stem cell transplant in severe forms of CSF2R-deficient PAP.
Collapse
Affiliation(s)
- Varsha Mishra-Sopori
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012
| | - Indu Khosla
- Department of Pediatrics, Lilavati Hospital and Research Center, Mumbai, India
| | - Sanaa Khan
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012
| | - Darshan Kataria
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012
| | - Pralhad Prabhudesai
- Department of Pulmonology, Lilavati Hospital and Research Center, Mumbai, India
| | - Parmarth Chandane
- Department of Pulmonology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Minnie Bodhanwala
- Department of Pediatrics, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012
| | - Prashant Hiwarkar
- Department of Blood and Marrow Transplantation, Bai Jerbai Wadia Hospital for Children, Mumbai, India, 400012.
| |
Collapse
|
2
|
Klubdaeng A, Tovichien P. Clinical approach for pulmonary alveolar proteinosis in children. World J Clin Cases 2024; 12:6339-6345. [PMID: 39464322 PMCID: PMC11438685 DOI: 10.12998/wjcc.v12.i30.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
In this editorial, we discuss the clinical implications of the article by Zhang et al. Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by excessive surfactant accumulation in the alveoli. It is classified into four categories: Primary, secondary, congenital, and unclassified forms. Primary PAP is caused by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor signaling, which is necessary for the clearance of surfactant by alveolar macrophages. It is further divided into autoimmune PAP, caused by anti-GM-CSF antibodies blocking alveolar macrophage activation, and hereditary PAP, resulting from mutations in genes encoding GM-CSF receptors. Secondary PAP develops due to conditions affecting the number or function of alveolar macrophages, such as infections, immunodeficiency, hematological disorders, or exposure to inhaled toxins. Congenital PAP is linked to mutations in genes involved in surfactant protein production. Notably, the causes of PAP differ between children and adults. Diagnostic features include a characteristic "crazy-paving" pattern on high-resolution computed tomography, accompanied by diffuse ground-glass opacities and interlobular septal thickening. The presence of PAP can be identified by the milky appearance of bronchoalveolar lavage fluid and histological evaluation. However, these methods cannot definitively determine the cause of PAP. Whole lung lavage remains the standard treatment, often combined with specific therapies based on the underlying cause.
Collapse
Affiliation(s)
- Anuvat Klubdaeng
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prakarn Tovichien
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Lyu TW, Yung K, Chien YC, Tsai XCH, Hou HA. Primary myelofibrosis as the etiology of pulmonary alveolar proteinosis: a rare clinical scenario. Leuk Lymphoma 2024:1-5. [PMID: 39329179 DOI: 10.1080/10428194.2024.2408363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Affiliation(s)
- Ting-Wei Lyu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Kenneth Yung
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Pulmonology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ying-Chun Chien
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Xavier Cheng-Hong Tsai
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Education and Research, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Lettieri S, Bonella F, Marando VA, Franciosi AN, Corsico AG, Campo I. Pathogenesis-driven treatment of primary pulmonary alveolar proteinosis. Eur Respir Rev 2024; 33:240064. [PMID: 39142709 PMCID: PMC11322829 DOI: 10.1183/16000617.0064-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome that results from the accumulation of lipoproteinaceous material in the alveolar space. According to the underlying pathogenetic mechanisms, three different forms have been identified, namely primary, secondary and congenital. Primary PAP is caused by disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling due to the presence of neutralising autoantibodies (autoimmune PAP) or GM-CSF receptor genetic defects (hereditary PAP), which results in dysfunctional alveolar macrophages with reduced phagocytic clearance of particles, cholesterol and surfactant. The serum level of GM-CSF autoantibody is the only disease-specific biomarker of autoimmune PAP, although it does not correlate with disease severity. In PAP patients with normal serum GM-CSF autoantibody levels, elevated serum GM-CSF levels is highly suspicious for hereditary PAP. Several biomarkers have been correlated with disease severity, although they are not specific for PAP. These include lactate dehydrogenase, cytokeratin 19 fragment 21.1, carcinoembryonic antigen, neuron-specific enolase, surfactant proteins, Krebs von Lungen 6, chitinase-3-like protein 1 and monocyte chemotactic proteins. Finally, increased awareness of the disease mechanisms has led to the development of pathogenesis-based treatments, such as GM-CSF augmentation and cholesterol-targeting therapies.
Collapse
Affiliation(s)
- Sara Lettieri
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Francesco Bonella
- Center for interstitial and rare lung diseases, Ruhrlandklinik, University of Essen, Essen, Germany
| | | | | | - Angelo Guido Corsico
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
5
|
Roy C, Allou N, Coulomb A, Grenet D, Borie R, Zuber B, Hamid A, Glorion M, Brun AL, Longchamps E, Hadchouel A, Brugiere O. Successful lung transplantation in genetic methionyl-tRNA synthetase-related alveolar proteinosis/lung fibrosis without recurrence under methionine supplementation: Medium-term outcome in 4 cases. Am J Transplant 2024; 24:1317-1322. [PMID: 38461880 DOI: 10.1016/j.ajt.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) results from the accumulation of lipoproteinaceous material in the alveoli and alveolar macrophages, and can be associated with pulmonary fibrosis, with a need for lung transplantation (LTx). Causes of PAP are autoimmune (90%-95%), secondary (5%), or hereditary (<1%). Patients with hereditary PAP are generally not considered for isolated LTx, due to the high probability of recurrence after LTx, and only a challenging scenario with sequential LTx followed by hematopoietic stem cell transplantation (HSCT) was reported as successful. Recently, a new genetic cause of PAP linked to mutations in the methionyl-tRNA synthetase (MARS) gene has been reported, with a highly variable clinical presentation. Because clinical correction of the defective MARS activity with methionine supplementation has been reported in nontransplanted children, we reassessed the feasibility of LTx for candidates with MARS-related PAP/fibrosis. We report 3 cases of LTx performed for MARS-related pulmonary alveolar proteinosis-pulmonary fibrosis without recurrence under methionine supplementation, whereas another fourth case transplanted without supplementation had fatal PAP recurrence. These results suggest the effectiveness of methionine in correcting defective MARS activity and also looking for this very rare diagnosis in case of unclassified PAP/fibrosis. It argues for not excluding the feasibility of isolated LTx in patients with MARS mutation.
Collapse
Affiliation(s)
- Charlotte Roy
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; Service de Pneumologie pédiatrique, Hôpital Necker, Paris, France
| | - Nathalie Allou
- Service de Pneumologie, Hôpital CHU Felix Guyon, La Réunion
| | - Aurore Coulomb
- Service d'Anatomopathologie, Hôpital Armand Trousseau, Paris, France
| | - Dominique Grenet
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Raphaël Borie
- Service de Pneumologie, Hôpital Bichat, Paris, France
| | | | - Abdulmonem Hamid
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; Collège de Médecine des hôpitaux de Paris (CMHP)
| | | | | | | | - Alice Hadchouel
- Service de Pneumologie pédiatrique, Hôpital Necker, Paris, France
| | - Olivier Brugiere
- Service de Pneumologie et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France; CEA/DRF/Institut de Biologie François Jacob/Service de Recherches en Hémato-Immunologie Hôpital St-Louis, Paris, France.
| |
Collapse
|
6
|
Rodriguez Gonzalez C, Schevel H, Hansen G, Schwerk N, Lachmann N. Pulmonary Alveolar Proteinosis and new therapeutic concepts. KLINISCHE PADIATRIE 2024; 236:73-79. [PMID: 38286410 PMCID: PMC10883756 DOI: 10.1055/a-2233-1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term used to refer to a pulmonary syndrome which is characterized by excessive accumulation of surfactant in the lungs of affected individuals. In general, PAP is a rare lung disease affecting children and adults, although its prevalence and incidence is variable among different countries. Even though PAP is a rare disease, it is a prime example on how modern medicine can lead to new therapeutic concepts, changing ways and techniques of (genetic) diagnosis which ultimately led into personalized treatments, all dedicated to improve the function of the impaired lung and thus life expectancy and quality of life in PAP patients. In fact, new technologies, such as new sequencing technologies, gene therapy approaches, new kind and sources of stem cells and completely new insights into the ontogeny of immune cells such as macrophages have increased our understanding in the onset and progression of PAP, which have paved the way for novel therapeutic concepts for PAP and beyond. As of today, classical monocyte-derived macrophages are known as important immune mediator and immune sentinels within the innate immunity. Furthermore, macrophages (known as tissue resident macrophages (TRMs)) can also be found in various tissues, introducing e. g. alveolar macrophages in the broncho-alveolar space as crucial cellular determinants in the onset of PAP and other lung disorders. Given recent insights into the onset of alveolar macrophages and knowledge about factors which impede their function, has led to the development of new therapies, which are applied in the context of PAP, with promising implications also for other diseases in which macrophages play an important role. Thus, we here summarize the latest insights into the various forms of PAP and introduce new pre-clinical work which is currently conducted in the framework of PAP, introducing new therapies for children and adults who still suffer from this severe, potentially life-threatening disease.
Collapse
Affiliation(s)
- Claudio Rodriguez Gonzalez
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Hannah Schevel
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
| | - Nicolaus Schwerk
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology,
Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Biomedical Research in Endstage
and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625
Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine,
Hannover, Germany
| |
Collapse
|
7
|
Popler J, Vece TJ, Liptzin DR, Gower WA. Pediatric pulmonology 2021 year in review: Rare and diffuse lung disease. Pediatr Pulmonol 2023; 58:374-381. [PMID: 36426677 DOI: 10.1002/ppul.26227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The field of rare and diffuse pediatric lung disease is experiencing rapid progress as diagnostic and therapeutic options continue to expand. In this annual review, we discuss manuscripts published in Pediatric Pulmonology in 2021 in (1) children's interstitial and diffuse lung disease, (2) congenital airway and lung malformations, and (3) noncystic fibrosis bronchiectasis including primary ciliary dyskinesia. These include case reports, descriptive cohorts, trials of therapies, animal model studies, and review articles. The results are put into the context of other literature in the field. Each furthers the field in important ways, while also highlighting the continued need for further studies.
Collapse
Affiliation(s)
- Jonathan Popler
- Children's Physician Group-Pulmonology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Timothy J Vece
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Deborah R Liptzin
- School of Public and Community Health, University of Montana, Missoula, Montana, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - William A Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Beeckmans H, Ambrocio GPL, Bos S, Vermaut A, Geudens V, Vanstapel A, Vanaudenaerde BM, De Baets F, Malfait TLA, Emonds MP, Van Raemdonck DE, Schoemans HM, Vos R. Allogeneic Hematopoietic Stem Cell Transplantation After Prior Lung Transplantation for Hereditary Pulmonary Alveolar Proteinosis: A Case Report. Front Immunol 2022; 13:931153. [PMID: 35928826 PMCID: PMC9344132 DOI: 10.3389/fimmu.2022.931153] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare, diffuse lung disorder characterized by surfactant accumulation in the small airways due to defective clearance by alveolar macrophages, resulting in impaired gas exchange. Whole lung lavage is the current standard of care treatment for PAP. Lung transplantation is an accepted treatment option when whole lung lavage or other experimental treatment options are ineffective, or in case of extensive pulmonary fibrosis secondary to PAP. A disadvantage of lung transplantation is recurrence of PAP in the transplanted lungs, especially in hereditary PAP. The hereditary form of PAP is an ultra-rare condition caused by genetic mutations in genes encoding for the granulocyte macrophage-colony stimulating factor (GM-CSF) receptor, and intrinsically affects bone marrow derived-monocytes, which differentiate into macrophages in the lung. Consequently, these macrophages typically display disrupted GM-CSF receptor-signaling, causing defective surfactant clearance. Bone marrow/hematopoietic stem cell transplantation may potentially reverse the lung disease in hereditary PAP. In patients with hereditary PAP undergoing lung transplantation, post-lung transplant recurrence of PAP may theoretically be averted by subsequent hematopoietic stem cell transplantation, which results in a graft-versus-disease (PAP) effect, and thus could improve long-term outcome. We describe the successful long-term post-transplant outcome of a unique case of end-stage respiratory failure due to hereditary PAP-induced pulmonary fibrosis, successfully treated by bilateral lung transplantation and subsequent allogeneic hematopoietic stem cell transplantation. Our report supports treatment with serial lung and hematopoietic stem cell transplantation to improve quality of life and prolong survival, without PAP recurrence, in selected patients with end-stage hereditary PAP.
Collapse
Affiliation(s)
- Hanne Beeckmans
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Gene P. L. Ambrocio
- Department of Internal Medicine, Division of Pulmonary Medicine, University of the Philippines – Philippine General Hospital, Manila, Philippines
| | - Saskia Bos
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Astrid Vermaut
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Vincent Geudens
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Arno Vanstapel
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Frans De Baets
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | | | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Red Cross-Flanders, Mechelen, Belgium
| | - Dirk E. Van Raemdonck
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Hélène M. Schoemans
- Department of Hematology, Bone Marrow Transplant Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Public Health and Primary Care, Academic Centre for Nursing and Midwifery, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- *Correspondence: Robin Vos,
| |
Collapse
|
9
|
Shima K, Arumugam P, Sallese A, Horio Y, Ma Y, Trapnell C, Wessendarp M, Chalk C, McCarthy C, Carey BC, Trapnell BC, Suzuki T. A murine model of hereditary pulmonary alveolar proteinosis caused by homozygous Csf2ra gene disruption. Am J Physiol Lung Cell Mol Physiol 2022; 322:L438-L448. [PMID: 35043685 PMCID: PMC8917935 DOI: 10.1152/ajplung.00175.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder caused by recessive mutations in GM-CSF receptor subunit α/β genes (CSF2RA/CSF2RB, respectively) characterized by impaired GM-CSF-dependent surfactant clearance by alveolar macrophages (AMs) resulting in alveolar surfactant accumulation and hypoxemic respiratory failure. Because hPAP is caused by CSF2RA mutations in most patients, we created an animal model of hPAP caused by Csf2ra gene disruption (Csf2ra-/- mice) and evaluated the effects on AMs and lungs. Macrophages from Csf2ra-/- mice were unable to bind and clear GM-CSF, did not exhibit GM-CSF signaling, and had functional defects in phagocytosis, cholesterol clearance, and surfactant clearance. Csf2ra-/- mice developed a time-dependent, progressive lung disease similar to hPAP in children caused by CSF2RA mutations with respect to the clinical, physiological, histopathological, biochemical abnormalities, biomarkers of PAP lung disease, and clinical course. In contrast, Csf2ra+/- mice had functionally normal AMs and no lung disease. Pulmonary macrophage transplantation (PMT) without myeloablation resulted in long-term engraftment, restoration of GM-CSF responsiveness to AMs, and a safe and durable treatment effect that lasted for the duration of the experiment (6 mo). Results demonstrate that homozygous (but not heterozygous) Csf2ra gene ablation caused hPAP identical to hPAP in children with CSF2RA mutations, identified AMs as the cellular site of hPAP pathogenesis in Csf2ra-/- mice, and have implications for preclinical studies supporting the translation of PMT as therapy of hPAP in humans.
Collapse
Affiliation(s)
- Kenjiro Shima
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Paritha Arumugam
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Anthony Sallese
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yuko Horio
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yan Ma
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cole Trapnell
- 2Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Matthew Wessendarp
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Claudia Chalk
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Cormac McCarthy
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,4Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Brenna C. Carey
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Bruce C. Trapnell
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,3Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,4Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Takuji Suzuki
- 1Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,5Department of Respirology, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Iftikhar H, Nair GB, Kumar A. Update on Diagnosis and Treatment of Adult Pulmonary Alveolar Proteinosis. Ther Clin Risk Manag 2021; 17:701-710. [PMID: 34408422 PMCID: PMC8364424 DOI: 10.2147/tcrm.s193884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare pulmonary surfactant homeostasis disorder resulting in buildup of lipo-proteinaceous material within the alveoli. PAP is classified as primary (autoimmune and hereditary), secondary, congenital and unclassifiable type based on the underlying pathogenesis. PAP has an insidious onset and can, in some cases, progress to severe respiratory failure. Diagnosis is often secured with bronchoalveolar lavage in the setting of classic imaging findings. Recent insights into genetic alterations and autoimmune mechanisms have provided newer diagnostics and treatment options. In this review, we discuss the etiopathogenesis, diagnosis and treatment options available and emerging for PAP.
Collapse
Affiliation(s)
- Hira Iftikhar
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Girish B Nair
- Division of Pulmonary and Critical Care, Beaumont Health, OUWB School of Medicine, Royal Oak, MI, USA
| | - Anupam Kumar
- Division of Pulmonary and Critical Care, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Grutters LA, Smith EC, Casteleijn CW, van Dongen EP, Ruven HJ, van der Vis JJ, Veltkamp M. Increased Efficacy of Whole Lung Lavage Treatment in Alveolar Proteinosis Using a New Modified Lavage Technique. J Bronchology Interv Pulmonol 2021; 28:215-220. [PMID: 34151899 PMCID: PMC8219085 DOI: 10.1097/lbr.0000000000000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmune pulmonary alveolar proteinosis is an ultra-rare pulmonary disease. Whole lung lavage (WLL) is considered the gold standard therapy. We report a protocol for a new modified lavage technique (nMLT) in which controlled repetitive manual hyperinflation (MH) and intermittent chest percussion are used to enhance WLL efficacy. METHODS We included all subjects with autoimmune pulmonary alveolar proteinosis treated with nMLT between 2013 and 2018. nMLT consisted of repetitive MH with intermittent chest percussion every third wash. We reported: instilled volume, protein concentration, and optical density using spectrophotometry. Pulmonary function (FVC %predicted and DLCO %predicted) at start of nMLT was recorded. Data are displayed as mean (±SD), median [interquartile range], or number (%). Comparisons within individuals were made using Students t test. RESULTS We included 11 subjects (64% male) in whom a total of 67 nMLTs were performed. One nMLT consisted of 15 [12-18] washes. Protein removal was 9.80 [7.52-12.66] g per nMLT. After the first, second, and third cycle of 3 washes, 56% [49% to 61%], 81% [77% to 84%], and 91% [88% to 94%] of the final protein yield was removed, respectively. Optical density was measured 116 times and increased from 1.13 (±0.52) to 1.31 (±0.52) after MH (P<0.001). CONCLUSION Efficacy of WLL seems to be enhanced by applying MH every 3 washes. Our technique of WLL with nMLT could be used to increase the amount of protein recruited while instilling the lung with the smallest volume of fluid as possible.
Collapse
Affiliation(s)
| | | | | | | | - Henk J. Ruven
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein
| | - Joanne J. van der Vis
- ILD Center of Excellence, Departments of Pulmonary Diseases
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein
| | - Marcel Veltkamp
- ILD Center of Excellence, Departments of Pulmonary Diseases
- Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
12
|
Ozcelik U, Aytac S, Kuskonmaz B, Yalcin E, Dogru D, Okur V, Kara A, Hizal M, Polat SE, Emiralioglu N, Kiper N, Çetinkaya DU. Nonmyeloablative hematopoietic stem cell transplantation in a patient with hereditary pulmonary alveolar proteinosis. Pediatr Pulmonol 2021; 56:341-343. [PMID: 33232559 DOI: 10.1002/ppul.25174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ugur Ozcelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Selin Aytac
- Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Baris Kuskonmaz
- Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Bone Marrow Transplantation Unit, Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ebru Yalcin
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Deniz Dogru
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Visal Okur
- Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Bone Marrow Transplantation Unit, Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ateş Kara
- Department of Pediatric Infectious Infectious Disease, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mina Hizal
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sanem Eryılmaz Polat
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Duygu Uckan Çetinkaya
- Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Bone Marrow Transplantation Unit, Department of Pediatric Hematology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Hadchouel A, Drummond D, Abou Taam R, Lebourgeois M, Delacourt C, de Blic J. Alveolar proteinosis of genetic origins. Eur Respir Rev 2020; 29:29/158/190187. [PMID: 33115790 DOI: 10.1183/16000617.0187-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare form of chronic interstitial lung disease, characterised by the intra-alveolar accumulation of lipoproteinaceous material. Numerous conditions can lead to its development. Whereas the autoimmune type is the main cause in adults, genetic defects account for a large part of cases in infants and children. Even if associated extra-respiratory signs may guide the clinician during diagnostic work-up, next-generation sequencing panels represent an efficient diagnostic tool. Exome sequencing also allowed the discovery of new variants and genes involved in PAP. The aim of this article is to summarise our current knowledge of genetic causes of PAP.
Collapse
Affiliation(s)
- Alice Hadchouel
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France .,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - David Drummond
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Rola Abou Taam
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Muriel Lebourgeois
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France.,INSERM U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Faculté de Médecine, Paris, France
| | - Jacques de Blic
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie Pédiatrique, Centre de Référence pour les Maladies Respiratoires Rares de l'Enfant, Paris, France
| |
Collapse
|
14
|
Abstract
There is a wide differential diagnosis of early onset respiratory distress especially in term babies, and interstitial lung disease (chILD) is a rare but important consideration in this context. chILD manifesting immediately after birth is usually related to mutations in surfactant protein genes, or conditions related to the Congenital Acinar Dysplasia -Alveolar capillary dysplasia - Congenital Alveolar Dysplasia (CAD-ACD) spectrum. There is currently no specific treatment for these conditions, and management is supportive. Prognosis is very poor in most of these babies if onset is early, with relentless respiratory deterioration unless transplanted. Ideally, the diagnosis is made on genetic analysis, but this may be time-consuming and complex in CAD-ACD spectrum, so lung biopsy may be needed to avoid prolonged and futile treatment being instituted. Milder forms with prolonged survival have been reported. Early onset, less severe chILD is usually related to neuroendocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and less severe disorders of surfactant proteins. PIG and NEHI are not specific entities, but are pulmonary dysmaturity syndromes, and there may be a number of underlying genetic and other cause. If the child is stable and thriving, many will not be subject to lung biopsy, and slow improvement and weaning of supplemental oxygen can be anticipated. Where possible, a precise genetic diagnosis should be made in early onset cHILD allow for genetic counselling. chILD survivors and their families have complex respiratory and other needs, and co-ordinated, multi-disciplinary support in the community is essential.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK.
| | | | - Jo Gregory
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Andrew Gordon Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, UK; National Heart and Lung Institute, Imperial College, UK
| | - Thomas Semple
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Rishi Pabary
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| |
Collapse
|
15
|
Bush A, Pabary R. Pulmonary alveolarproteinosis in children. Breathe (Sheff) 2020; 16:200001. [PMID: 32684993 PMCID: PMC7341618 DOI: 10.1183/20734735.0001-2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is an umbrella term for a wide spectrum of conditions that have a very characteristic appearance on computed tomography. There is outlining of the secondary pulmonary lobules on the background of ground-glass shadowing and pathologically, filling of the alveolar spaces with normal or abnormal surfactant. PAP is rare and the common causes in children are very different from those seen in adults; autoimmune PAP is rare and macrophage blockade not described in children. There are many genetic causes of PAP, the best known of which are mutations in the genes encoding surfactant protein (SP)-B, SP-C, thyroid transcription factor 1, ATP-binding cassette protein 3, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor α- and β- chains. PAP may also be a manifestation of rheumatological and metabolic disease, congenital immunodeficiency, and haematological malignancy. Precise diagnosis of the underlying cause is essential in planning treatment, as well as for genetic counselling. The evidence base for treatment is poor. Some forms of PAP respond well to whole-lung lavage, and autoimmune PAP, which is much commoner in adults, responds to inhaled or subcutaneous GM-CSF. Emerging therapies based on studies in murine models of PAP include stem-cell transplantation for GM-CSF receptor mutations. EDUCATIONAL AIMS To understand when to suspect that a child has pulmonary alveolar proteinosis (PAP) and how to confirm that this is the cause of the presentation.To show that PAP is an umbrella term for conditions characterised by alveolar filling by normal or abnormal surfactant, and that this term is the start, not the end, of the diagnostic journey.To review the developmental differences in the spectrum of conditions that may cause PAP, and specifically to understand the differences between causes in adults and children.To discuss when to treat PAP with whole-lung lavage and/or granulocyte-macrophage colony-stimulating factor, and review potential promising new therapies.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| | - Rishi Pabary
- Imperial College, London, UK
- Royal Brompton Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
McCarthy C, Kokosi M, Bonella F. Shaping the future of an ultra-rare disease: unmet needs in the diagnosis and treatment of pulmonary alveolar proteinosis. Curr Opin Pulm Med 2019; 25:450-458. [PMID: 31365379 DOI: 10.1097/mcp.0000000000000601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Pulmonary alveolar proteinosis (PAP) can be considered the archetype of ultra-rare diseases with a prevalence of under 10 cases per million. We discuss the classification of PAP, the current diagnostic practice and the supplementary role of genetic testing and granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling in the diagnosis of congenital and hereditary PAP. We report on novel therapeutic approaches such as GM-CSF substitution, stem cell transplantation, pioglitazone, statins and immunomodulation. RECENT FINDINGS The discovery of new genetic mutations underlying this syndrome raises the question whether the classification should be radically revised in the future. Serum GM-CSF autoantibody is the best diagnostic marker for autoimmune PAP, the most common form, but does not correlate with disease severity. Several circulating biomarkers have been investigated to assess disease activity and predict outcome. Imaging techniques have also enormously evolved and offer new tools to quantify disease burden and possibly drive therapeutic decisions. Promising clinical trials are ongoing and will generate new treatment strategies besides or in addition to whole lung lavage in the next future. SUMMARY Despite impressive advances in understanding pathogenesis, PAP remains a rare syndrome with several unanswered questions impacting diagnosis, management and treatment, and, as a result, patients' quality of life.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, Rare Lung Disease Centre, St. Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Maria Kokosi
- Interstitial Lung Disease Unit, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Francesco Bonella
- Department of Pneumology, Centre for Interstitial and Rare Lung Disease, Ruhrlandklinik, University Hospital Essen, Essen, Germany
| |
Collapse
|
17
|
Hetzel M, Lopez-Rodriguez E, Mucci A, Nguyen AHH, Suzuki T, Shima K, Buchegger T, Dettmer S, Rodt T, Bankstahl JP, Malik P, Knudsen L, Schambach A, Hansen G, Trapnell BC, Lachmann N, Moritz T. Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica 2019; 105:1147-1157. [PMID: 31289207 PMCID: PMC7109724 DOI: 10.3324/haematol.2018.214866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/05/2019] [Indexed: 12/29/2022] Open
Abstract
Hereditary pulmonary alveolar proteinosis due to GM-CSF receptor deficiency (herPAP) constitutes a life-threatening lung disease characterized by alveolar deposition of surfactant protein secondary to defective alveolar macrophage function. As current therapeutic options are primarily symptomatic, we have explored the potential of hematopoietic stem cell-based gene therapy. Using Csf2rb-/- mice, a model closely reflecting the human herPAP disease phenotype, we here demonstrate robust pulmonary engraftment of an alveolar macrophage population following intravenous transplantation of lentivirally corrected hematopoietic stem and progenitor cells. Engraftment was associated with marked improvement of critical herPAP disease parameters, including bronchoalveolar fluid protein, cholesterol and cytokine levels, pulmonary density on computed tomography scans, pulmonary deposition of Periodic Acid-Schiff+ material as well as respiratory mechanics. These effects were stable for at least nine months. With respect to engraftment and alveolar macrophage differentiation kinetics, we demonstrate the rapid development of CD11c+/SiglecF+ cells in the lungs from a CD11c-/SiglecF+ progenitor population within four weeks after transplantation. Based on these data, we suggest hematopoietic stem cell-based gene therapy as an effective and cause-directed treatment approach for herPAP.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Adele Mucci
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Pulmonary Medicine, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Kenjiro Shima
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Theresa Buchegger
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Sabine Dettmer
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Thomas Rodt
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute (CBDI), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gesine Hansen
- Department of Pediatrics, Allergology, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Pulmonary Medicine, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
The influence of genetics on therapeutic developments in pulmonary alveolar proteinosis. Curr Opin Pulm Med 2019; 25:294-299. [PMID: 30865035 DOI: 10.1097/mcp.0000000000000576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Pulmonary alveolar proteinosis (PAP) is characterized by the massive accumulation of lipoproteinaceous material within alveoli, which results in progressive respiratory failure. The abnormalities in surfactant clearance are caused by defective pulmonary macrophages, whose terminal differentiation is GM-CSF-dependent. In hereditary PAP, the rupture of GM-CSF signaling is because of mutations in the GM-CSF receptor genes. This review focus on the innovative technologies of gene-correction proposed for the development of new therapeutic strategies, for hereditary PAP patients. RECENT FINDINGS Hematopoietic stem cell gene therapy has been successfully experimented in murine models to restore the expression of the GM-CSF receptor, however, a therapeutic approach based on bone marrow transplantation requires a preconditioning, which could be hazardous in PAP patients, who are highly susceptible to pulmonary infections. Gene-corrected pulmonary macrophages, administered directly to the lung, could represent an improved approach. Finally, patient-derived induced pluripotent stem cells seem to be promising to overcome the limited availability of primary patient cells and to generate gene-corrected macrophages, able to recover pulmonary surfactant clearance. SUMMARY WLL is the gold standard therapy for PAP. However, its use in hereditary PAP is limited by the difficulty of performing this technique in paediatric patients and by its purely symptomatic efficacy. The recent advances in genome engineering could provide efficacious strategies for clinical application.
Collapse
|
19
|
Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J, Wang T, Morgan C, Cottin V, McCarthy C. Pulmonary alveolar proteinosis. Nat Rev Dis Primers 2019; 5:16. [PMID: 30846703 DOI: 10.1038/s41572-019-0066-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for >90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Koh Nakata
- Bioscience Medical Research Center, Niigata University, Niigata, Japan
| | - Francesco Bonella
- Interstitial and Rare Lung Disease Unit, Pneumology Department, Ruhrlandklinik University Hospital, University of Essen, Essen, Germany
| | - Ilaria Campo
- Pneumology Unit, IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - Matthias Griese
- Pediatric Pneumology, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - John Hamilton
- University of Melbourne, Parkville, Victoria, Australia
| | - Tisha Wang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Cliff Morgan
- Department of Critical Care and Anaesthesia, Royal Brompton Hospital, London, UK
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, University of Lyon, Lyon, France
| | - Cormac McCarthy
- Department of Medicine, St. Vincent's University Hospital and University College Dublin, Dublin, Ireland
| |
Collapse
|