1
|
Yu Y, Liu H, Yuan L, Pan M, Bei Z, Ye T, Qian Z. Niclosamide - encapsulated lipid nanoparticles for the reversal of pulmonary fibrosis. Mater Today Bio 2024; 25:100980. [PMID: 38434573 PMCID: PMC10907778 DOI: 10.1016/j.mtbio.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a serious and progressive fibrotic interstitial lung disease that is possibly life-threatening and that is characterized by fibroblast accumulation and collagen deposition. Nintedanib and pirfenidone are currently the only two FDA-approved oral medicines for PF. Some drugs such as antihelminthic drug niclosamide (Ncl) have shown promising therapeutic potentials for PF treatment. Unfortunately, poor aqueous solubility problems obstruct clinical application of these drugs. Herein, we prepared Ncl-encapsulated lipid nanoparticles (Ncl-Lips) for pulmonary fibrosis therapy. A mouse model of pulmonary fibrosis induced by bleomycin (BLM) was generated to assess the effects of Ncl-Lips and the mechanisms of reversing fibrosis in vivo. Moreover, cell models treated with transforming growth factor β1 (TGFβ1) were used to investigate the mechanism through which Ncl-Lips inhibit fibrosis in vitro. These findings demonstrated that Ncl-Lips could alleviate fibrosis, consequently reversing the changes in the levels of the associated marker. Moreover, the results of the tissue distribution experiment showed that Ncl-Lips had aggregated in the lung. Additionally, Ncl-Lips improved the immune microenvironment in pulmonary fibrosis induced by BLM. Furthermore, Ncl-Lips suppressed the TGFβ1-induced activation of fibroblasts and epithelial-mesenchymal transition (EMT) in epithelial cells. Based on these results, we demonstrated that Ncl-Lips is an efficient strategy for reversing pulmonary fibrosis via drug-delivery.
Collapse
Affiliation(s)
- Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyao Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Jain N, Shashi Bhushan BL, Natarajan M, Mehta R, Saini DK, Chatterjee K. Advanced 3D In Vitro Lung Fibrosis Models: Contemporary Status, Clinical Uptake, and Prospective Outlooks. ACS Biomater Sci Eng 2024; 10:1235-1261. [PMID: 38335198 DOI: 10.1021/acsbiomaterials.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Fibrosis has been characterized as a global health problem and ranks as one of the primary causes of organ dysfunction. Currently, there is no cure for pulmonary fibrosis, and limited therapeutic options are available due to an inadequate understanding of the disease pathogenesis. The absence of advanced in vitro models replicating dynamic temporal changes observed in the tissue with the progression of the disease is a significant impediment in the development of novel antifibrotic treatments, which has motivated research on tissue-mimetic three-dimensional (3D) models. In this review, we summarize emerging trends in preparing advanced lung models to recapitulate biochemical and biomechanical processes associated with lung fibrogenesis. We begin by describing the importance of in vivo studies and highlighting the often poor correlation between preclinical research and clinical outcomes and the limitations of conventional cell culture in accurately simulating the 3D tissue microenvironment. Rapid advancement in biomaterials, biofabrication, biomicrofluidics, and related bioengineering techniques are enabling the preparation of in vitro models to reproduce the epithelium structure and operate as reliable drug screening strategies for precise prediction. Improving and understanding these model systems is necessary to find the cross-talks between growing cells and the stage at which myofibroblasts differentiate. These advanced models allow us to utilize the knowledge and identify, characterize, and hand pick medicines beneficial to the human community. The challenges of the current approaches, along with the opportunities for further research with potential for translation in this field, are presented toward developing novel treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - B L Shashi Bhushan
- Department of Pulmonary Medicine, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - M Natarajan
- Department of Pathology, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - Ravi Mehta
- Department of Pulmonology and Critical Care, Apollo Hospitals, Jayanagar, Bangalore 560011 India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| |
Collapse
|
3
|
Yin JZ, Li ZQ, Zhang XD, Wan ZJ, Qin HR, Yao LH, Li BL, Gao F, Yang YY. Bufotalin attenuates pulmonary fibrosis via inhibiting Akt/GSK-3β/β-catenin signaling pathway. Eur J Pharmacol 2024; 964:176293. [PMID: 38158113 DOI: 10.1016/j.ejphar.2023.176293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with no cure. Bufotalin (BT), an active component extracted from Venenum Bufonis, has been prescribed as a treatment for chronic inflammatory diseases. However, whether BT has antifibrotic properties has never been investigated. In this study, we report on the potential therapeutic effect and mechanism of BT on IPF. BT was shown to attenuate lung injury, inflammation, and fibrosis as well as preserve pulmonary function in bleomycin (BLM)-induced pulmonary fibrosis model. We next confirmed BT's ability to inhibit TGF-β1-induced epithelial-mesenchymal transition (EMT) and myofibroblast activation (including differentiation, proliferation, migration, and extracellular matrix production) in vitro. Furthermore, transcriptional profile analysis indicated the Wnt signaling pathway as a potential target of BT. Mechanistically, BT effectively prevented β-catenin from translocating into the nucleus to activate transcription of profibrotic genes. This was achieved by blunting TGF-β1-induced increases in phosphorylated Akt Ser437 (p-Akt S437) and phosphorylated glycogen synthase kinase (GSK)-3β Ser9 (p-GSK-3β S9), thereby reactivating GSK-3β. Additionally, the antifibrotic effects of BT were further validated in another in vivo model of radiation-induced pulmonary fibrosis. Collectively, these data demonstrated the potent antifibrotic actions of BT through inhibition of Akt/GSK-3β/β-catenin axis downstream of TGF-β1. Thus, BT could be a potential option to be further explored in IPF treatment.
Collapse
Affiliation(s)
- Ji-Zhong Yin
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China
| | - Zhu-Qing Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China
| | - Xi-de Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China
| | - Zhi-Jie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China
| | - Hong-Ran Qin
- Department of Nuclear Radiation, Shanghai Pulmonary Hospital, Tongji University, 507, Zhengmin Road, 200433, Shanghai, China
| | - Liu-Huan Yao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China
| | - Bai-Long Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China.
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China.
| | - Yan-Yong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, 200433, Shanghai, China.
| |
Collapse
|
4
|
Luo Z, Ji L, Liu H, Sun Y, Zhao C, Xu X, Gu X, Ai X, Yang C. Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement. AAPS PharmSciTech 2023; 24:235. [PMID: 37973629 DOI: 10.1208/s12249-023-02690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhilin Luo
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liyuan Ji
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
| | - Hongting Liu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yao Sun
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Conglu Zhao
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiang Xu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoting Gu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Xiaoyu Ai
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Cheng Yang
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
5
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
6
|
Chen X, Luan M, Liu J, Yao Y, Li X, Wang T, Zhang H, Han Y, Lu X, Chen W, Hu X, Zheng M, Qiu X, Zhu T. Risk factors in air pollution exposome contributing to higher levels of TNFα in COPD patients. ENVIRONMENT INTERNATIONAL 2022; 159:107034. [PMID: 34906887 DOI: 10.1016/j.envint.2021.107034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollutants are found associated with various health effects in chronic obstructive pulmonary patients. Given the complicate chemical components of air pollutants, it is not clear which components are the main risk factors for these health effects. OBJECTIVES Based on the COPD in Beijing (COPDB) study and exposome concept, we examined comprehensively the air pollution components to screen out high-risk factors for systemic inflammation of COPD patients. METHODS Concentrations of PM with aerodynamic diameter ≤ 2.5 μm (PM2.5), ultrafine and accumulated-mode particles (UFPs and Acc), PM2.5-contained carbonaceous components/elements/water soluble ions, gaseous pollutants, temperature, and relative humidity (RH) were continuously monitored around participants. Urinary polycyclic aromatic hydrocarbons (PAHs) and cotinine, and serum tumor necrosis factor α (TNFα) were measured from 53 COPD and 82 non-COPD participants. Lifestyle variables were recorded using follow-up questionnaire. Linear mixed effects (LME) models were used to assess the associations of TNFα differences with exposure to air pollutants, meteorological variations, and lifestyle. RESULTS In COPD patients, the associations of TNFα differences with exposure to ozone, Cd, UFPs, Acc, 2-hydroxydibenzofuran, temperature and RH parameters, and several elements in PM2.5 were significant in certain time-windows. For example, per interquartile range (IQR) increase in average ozone concentration 14 d before visits was associated with 17.3% (95% confidence interval: 6.8%, 27.7%) TNFα difference. Associations between ozone, Cd, UFPs, Acc, the maximum value of RH, and 2-hydroxydibenzofuran exposure and TNFα differences remained robust in two-pollutant models, and contributed to 19.0%, 10.5%, 2.2%, 1.6%, 2.1%, and 1.5% TNFα differences, respectively. Among the high-risk factors for COPD patients, the responses to UFPs, Acc, and 2-hydroxydibenzofuran were not robust in non-COPD participants. DISCUSSION Ozone, Cd, UFPs, Acc, PAHs exposure and RH variation were high-risk factors of systemic inflammation for COPD patients, and the profile of high-risk factors were different from those in general population.
Collapse
Affiliation(s)
- Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building, Shenzhen Institute of Building Research Co., Ltd., Xiongan 071700, China
| | - Mengxiao Luan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinming Liu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoying Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hanxiyue Zhang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Department of Epidemiology and Biostatistics, MRC Centre for Environmental and Health, Imperial College London, SW7 2AZ, UK
| | - Xinchen Lu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyan Hu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Zheng
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|