1
|
Thackray AM, McNulty EE, Nalls AV, Cardova A, Tran L, Telling G, Benestad SL, Gilch S, Mathiason CK, Bujdoso R. Genetic modulation of CWD prion propagation in cervid PrP Drosophila. Biochem J 2023; 480:1485-1501. [PMID: 37747806 PMCID: PMC10586768 DOI: 10.1042/bcj20230247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.
Collapse
Affiliation(s)
- Alana M. Thackray
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Erin E. McNulty
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Amy V. Nalls
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Alzbeta Cardova
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| | - Linh Tran
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Glenn Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Sylvie L. Benestad
- Department of Biohazard and Pathology, WOAH Reference Laboratory for CWD (SLB), National Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Candace K. Mathiason
- Prion Research Center (PRC) and the Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Raymond Bujdoso
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, U.K
| |
Collapse
|
2
|
Gelasakis AI, Boukouvala E, Babetsa M, Katharopoulos E, Palaska V, Papakostaki D, Giadinis ND, Loukovitis D, Langeveld JPM, Ekateriniadou LV. Polymorphisms of Codons 110, 146, 211 and 222 at the Goat PRNP Locus and Their Association with Scrapie in Greece. Animals (Basel) 2021; 11:ani11082340. [PMID: 34438796 PMCID: PMC8388637 DOI: 10.3390/ani11082340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022] Open
Abstract
Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies.
Collapse
Affiliation(s)
- Athanasios I. Gelasakis
- Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Evridiki Boukouvala
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | - Maria Babetsa
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
| | | | - Vayia Palaska
- National Reference Laboratory for TSEs, Ministry of Agricultural Development and Food, 41110 Larissa, Greece;
| | - Dimitra Papakostaki
- Veterinary Center of Thessaloniki, Ministry of Agricultural Development and Food, 54627 Thessaloniki, Greece;
| | - Nektarios D. Giadinis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | | | - Jan P. M. Langeveld
- Department of Infection Biology, Wageningen Bioveterinary Research (WBVR), 8221 RA Lelystad, The Netherlands;
| | - Loukia V. Ekateriniadou
- Veterinary Research Institute, ELGO-DIMITRA, 54124 Thessaloniki, Greece; (E.B.); (M.B.); (E.K.)
- Correspondence:
| |
Collapse
|
3
|
Robinson AL, Williamson H, Güere ME, Tharaldsen H, Baker K, Smith SL, Pérez-Espona S, Krojerová-Prokešová J, Pemberton JM, Goldmann W, Houston F. Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe. Vet Res 2019; 50:59. [PMID: 31366372 PMCID: PMC6668158 DOI: 10.1186/s13567-019-0675-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023] Open
Abstract
Susceptibility to prion diseases is largely determined by the sequence of the prion protein gene (PRNP), which encodes the prion protein (PrP). The recent emergence of chronic wasting disease (CWD) in Europe has highlighted the need to investigate PRNP gene diversity in European deer species, to better predict their susceptibility to CWD. Here we report a large genetic survey of six British deer species, including red (Cervus elaphus), sika (Cervus nippon), roe (Capreolus capreolus), fallow (Dama dama), muntjac (Muntiacus reevesii), and Chinese water deer (Hydropotes inermis), which establishes PRNP haplotype and genotype frequencies. Two smaller data sets from red deer in Norway and the Czech Republic are also included for comparison. Overall red deer show the most PRNP variation, with non-synonymous/coding polymorphisms at codons 98, 168, 226 and 247, which vary markedly in frequency between different regions. Polymorphisms P168S and I247L were only found in Scottish and Czech populations, respectively. T98A was found in all populations except Norway and the south of England. Significant regional differences in genotype frequencies were observed within both British and European red deer populations. Other deer species showed less variation, particularly roe and fallow deer, in which identical PRNP gene sequences were found in all individuals analysed. Based on comparison with PRNP sequences of North American cervids affected by CWD and limited experimental challenge data, these results suggest that a high proportion of wild deer in Great Britain may be susceptible to CWD.
Collapse
Affiliation(s)
- Amy L Robinson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.
| | - Helen Williamson
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Mariella E Güere
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Helene Tharaldsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway
| | - Karis Baker
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Stephanie L Smith
- The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Sílvia Pérez-Espona
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK.,The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Jarmila Krojerová-Prokešová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic.,Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Wilfred Goldmann
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| | - Fiona Houston
- Division of Infection and Immunity, The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian, EH259RG, UK
| |
Collapse
|
4
|
Alarcon P, Marco-Jimenez F, Arnold M, Wolf A, Rajanayagam B, Stevens KB, Adkin A. Spatio-temporal and risk factor analysis of alleles related to Scrapie resistance in sheep in Great Britain before, during and after a national breeding program. Prev Vet Med 2018; 159:12-21. [PMID: 30314774 DOI: 10.1016/j.prevetmed.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022]
Abstract
Certain genotypes of sheep have been identified to increase their susceptibility (the VRQ allele) or resistance (the ARR allele) to classical scrapie. This study's aim was to assess the spatio-temporal pattern of the ARR and VRQ alleles in Great Britain (GB) and to explore the risk factors associated to their presence. Data was collected from the GB scrapie active surveillance program, the sheep and goat inventory survey (GB census survey) and the agricultural survey for the period 2002-2015. Spatio-temporal trends of genotypes were assessed through the use of choropleth maps, spatial cluster and linear regression analyses. Multivariable mixed effect logistic regression analyses were performed to investigate the association between the resistant or susceptible genotypes, and breeds, farm purpose, animal purpose, surveillance stream, country location and herd size. The results show a significant upward trend in the frequency of most resistant ARR alleles (1.15% per year, 95%CI: 0.76-1.53) and significant downward trend of most susceptible VRQ alleles (-0.40% per year; 95%CI: -0.69 to -0.10]. The trend continues after the termination of the national scrapie plan in 2009. Breeds such as Herdwick (OR = 0,26; 95%CI: 0.14-0.46), Shetland (OR = 0.22; 95%CI: 0.13-0.39), Swaledale (OR = 0.58; 95%CI: 0.47-0.73), Scottish blackface (OR = 0.54; 95%CI: 0.41-0.71) and Welsh Montain (OR: 0.59; 95%CI: 0.44-0.79) were identified with lower odds ratios of having the resistant ARR allele, while Beulah speckled face (OR = 1.58; 95%CI: 1.04-2.41), Jacob (OR = 2.91; 95%CI: 1.33-6.40), Lleyn (OR = 2.94; 95%CI: 1.28-6.74) and Suffolk (OR = 2.19; 95%CI: 1.69-2.84) had higher odds ratios of having the ARR allele. Other risk factors associated to presence of ARR allele were finishing farms (OR = 1.15; 95%CI: 1.06-1.24) and farms in Scotland (OR = 0,78; 95%CI: 0.73-0.83) and in Lowland grazing areas (OR = 1.53; 95%CI: 1.39-1.67). Factors associated with presence the VRQ genotype were farms in Scotland (OR = 0,85; 95%CI: 0.77-0.93) and breeds such as Herdwick (OR = 2.2; 95%CI: 1.08-4.97), Shetland (OR = 4.12; 95%CI: 2.20-7.73) and Sweledale (OR = 1.51; 95%CI: 1.10-2.09). For the most resistant genotype, two significant spatial clusters were identified: a high-risk cluster in the south-west of GB (RR = 1.51, p < 0.001) and a low-risk cluster in northern GB (RR = 0.65, p < 0.001). For the most susceptible genotypes, one significant high-risk cluster was identified in Wales (RR = 2.89 and p = 0.013). Surveillance for classical scrapie could be improved with a risk-based approach by focussing on those areas and farm types identified to have higher frequency of VRQ alleles and less frequency of ARR alleles. Scrapie control strategies could focus on developing breeding programs on farms with Shetland, Herdwick and Swaledale breeds.
Collapse
Affiliation(s)
- Pablo Alarcon
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK.
| | - Francisco Marco-Jimenez
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK; Institute for Animal Science and Technology, Universitat Politècnica de València, C/Camino de vera s/n, Valencia, 46071, Spain
| | - Mark Arnold
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Alyssa Wolf
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Brenda Rajanayagam
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Kim B Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Medicine, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Amie Adkin
- Department of Epidemiological Sciences, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
5
|
Meling S, Skovgaard K, Bårdsen K, Helweg Heegaard PM, Ulvund MJ. Expression of selected genes isolated from whole blood, liver and obex in lambs with experimental classical scrapie and healthy controls, showing a systemic innate immune response at the clinical end-stage. BMC Vet Res 2018; 14:281. [PMID: 30208891 PMCID: PMC6134718 DOI: 10.1186/s12917-018-1607-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Incubation period, disease progression, pathology and clinical presentation of classical scrapie in sheep are highly dependent on PRNP genotype, time and route of inoculation and prion strain. Our experimental model with pre-colostrum inoculation of homozygous VRQ lambs has shown to be an effective model with extensive PrPSc dissemination in lymphatic tissue and a short incubation period with severe clinical disease. Serum protein analysis has shown an elevation of acute phase proteins in the clinical stages of this experimental model, and here, we investigate changes in gene expression in whole blood, liver and brain. RESULTS The animals in the scrapie group showed severe signs of illness 22 weeks post inoculation necessitating euthanasia at 23 weeks post inoculation. This severe clinical presentation was accompanied by changes in expression of several genes. The following genes were differentially expressed in whole blood: TLR2, TLR4, C3, IL1B, LF and SAA, in liver tissue, the following genes differentially expressed: TNF-α, SAA, HP, CP, AAT, TTR and TF, and in the brain tissue, the following genes were differentially expressed: HP, CP, ALB and TTR. CONCLUSIONS We report a strong and evident transcriptional innate immune response in the terminal stage of classical scrapie in these animals. The PRNP genotype and time of inoculation are believed to contribute to the clinical presentation, including the extensive dissemination of PrPSc throughout the lymphatic tissue.
Collapse
Affiliation(s)
- Siv Meling
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Kjetil Bårdsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| | | | - Martha J. Ulvund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
| |
Collapse
|
6
|
The effect of genetic susceptibility and targeting of sampling on the sensitivity of the surveillance system and certainty-of-freedom for classical scrapie in Finland in 2008-2014. Prev Vet Med 2018; 152:23-31. [PMID: 29559102 DOI: 10.1016/j.prevetmed.2018.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 11/21/2022]
Abstract
We applied scenario tree modeling to study how the genetic distribution of the sheep population in Finland and the focusing on fallen stock would influence the surveillance sensitivity of scrapie. To incorporate the unevenly distributed susceptibility into the estimation we used data from GB where the genetic distribution and scrapie occurrence have been documented in both normally slaughtered and deceased animals. Finland's sheep population is more susceptible to scrapie than the sheep population in GB and surveillance is concentrated on fallen stock. As a result, there is high systemic sensitivity in Finland even with the moderate number of studied animals. The certainty of the freedom-of-disease status is clearly elevated by the low probability of previous disease occurrence and low probability of introduction. The results highlight the need to change the concept from surveillance system sensitivity to freedom-of-disease status and to also consider the risk of introduction and the cumulative nature of the disease prevalence information due repeated surveillance efforts.
Collapse
|
7
|
Modelling of strategies for genetic control of scrapie in sheep: The importance of population structure. PLoS One 2018; 13:e0195009. [PMID: 29584772 PMCID: PMC5871008 DOI: 10.1371/journal.pone.0195009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/14/2018] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a transmissible spongiform encephalopathy in sheep and an example of a disease that may be controlled through breeding for disease resistance. Member states of the European Union have introduced strategies for breeding against scrapie based on the selection of genetically resistant breeding rams. An ambitious strategy adopted in The Netherlands consisted of selecting resistant rams for breeding throughout both breeding and production sectors. Mathematical modelling of the effect of a breeding program on the spreading capacity of scrapie in a national flock is needed for making assessments on how long a breeding strategy needs to be maintained to achieve disease control. Here we describe such a model applied to the Dutch situation, with the use of data on the genetic content of the Dutch sheep population as well as on scrapie occurrence in this population. We show that the time needed for obtaining scrapie control depends crucially on two parameters measuring sheep population structure: the between-flock heterogeneity in genotype frequencies, and the heterogeneity of mixing (contact rates) between sheep flocks. Estimating the first parameter from Dutch genetic survey data and assuming scenario values for the second one, enables model prediction of the time needed to achieve scrapie control in The Netherlands.
Collapse
|
8
|
Genetic diversity of the prion protein gene (PRNP) coding sequence in Czech sheep and evaluation of the national breeding programme for resistance to scrapie in the Czech Republic. J Appl Genet 2016; 58:111-121. [DOI: 10.1007/s13353-016-0354-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
9
|
Review: A review on classical and atypical scrapie in caprine: Prion protein gene polymorphisms and their role in the disease. Animal 2016; 10:1585-93. [PMID: 27109462 DOI: 10.1017/s1751731116000653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy in sheep and goat. It has been known for ~250 years and is characterised by the accumulation of an abnormal isoform of a host-encoded prion protein that leads to progressive neurodegeneration and death. Scrapie is recognised in two forms, classical and atypical scrapie. The susceptibility to both types of scrapie is influenced by polymorphisms of the prion protein gene (PRNP). Sheep susceptibility or resistance to classical scrapie is strongly regulated by the polymorphisms at codons 136, 154 and 171 of the PRNP. The genetic role in atypical scrapie in sheep has been defined by polymorphisms at codons 141, 154 and 171, which are associated with different degrees of risk in the occurrence of the ovine disease. Progress has been achieved in the prevention of scrapie in sheep due to efficient genetic breeding programmes based on eradication and control of the disease. In Europe, the success of these programmes has been verified by applying eradication and genetic selection plans. In general terms, the ovine selection plans aim to eliminate and reduce the susceptible allele and to enrich the resistant allele ARR. During outbreaks all susceptible animals are slaughtered, only ARR/ARR resistant rams and sheep and semi-resistant females are preserved. In the occurrence of scrapie positive goats a complete cull of the flock (stamping out) is performed with great economic loss and severe risk of extinction for the endangered breeds. The ability to select scrapie-resistant animals allows to define new breeding strategies aimed to boost genetic progress while reducing costs during scrapie outbreaks. Allelic variants of PRNP can be protective for caprine scrapie, and the knowledge of their distribution in goats has become very important. Over the past few years, the integration of genetic information on goat populations could be used to make selection decisions, commonly referred to as genetic selection. The objective of this review was to summarise the main findings of polymorphisms of the caprine prion protein (PrP) gene and to discuss the possible application of goat breeding schemes integrating genetic selection, with their relative advantages and limitations.
Collapse
|
10
|
Curcio L, Lasagna E, Sarti FM, Sebastiani C, Pezzotti G, Biagetti M. Biodiversity and Genetic Polymorphisms Against Scrapie inSopravissanaSheep Breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.4251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Windig JJ, Hoving RAH, Priem J, Bossers A, van Keulen LJM, Langeveld JPM. Variation in the prion protein sequence in Dutch goat breeds. J Anim Breed Genet 2016; 133:366-74. [PMID: 26991480 DOI: 10.1111/jbg.12211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/12/2016] [Indexed: 11/28/2022]
Abstract
Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds.
Collapse
Affiliation(s)
- J J Windig
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, The Netherlands.
| | - R A H Hoving
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Wageningen, The Netherlands
| | - J Priem
- Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - A Bossers
- Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - L J M van Keulen
- Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| | - J P M Langeveld
- Central Veterinary Institute part of Wageningen UR, Lelystad, The Netherlands
| |
Collapse
|
12
|
|
13
|
Arnold M, Ortiz-Pelaez A. The evolution of the prevalence of classical scrapie in sheep in Great Britain using surveillance data between 2005 and 2012. Prev Vet Med 2014; 117:242-50. [PMID: 25183633 DOI: 10.1016/j.prevetmed.2014.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 07/11/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
After the decline of the Bovine Spongiform Encephalopathy (BSE) epidemic in Great Britain (GB), scrapie remains the most prevalent animal Transmissible Spongiform Encephalopathy (TSE) present in GB. A number of control measures have been implemented for classical scrapie, and since 2005 there has been a large reduction in the number of observed cases. The objective of this study is to estimate two measures of disease frequency using up to date surveillance data collected during and after the implementation of different control measures established since 2004, and breeding for resistance schemes that ran from 2001 until 2009. This would enable an assessment of the effectiveness of both the breeding for resistance programme and the compulsory eradication measures in reducing the prevalence of scrapie in GB. Evaluation of the sensitivity of the rapid post-mortem test for scrapie indicated that it detected scrapie in the last 25% of the incubation period. A back-calculation model was developed to estimate the prevalence of infection at animal and flock-level. The results of the model indicated a mean drop of infection prevalence of 31% each year, leading to a 90% drop in infection prevalence between 2005, with an estimate of 5737 infected sheep in GB in 2012. The risks of classical scrapie infection in animals with genotypes of National Scrapie Plan Types I-IV (all other genotypes), relative to Type V (all genotypes containing V136 R154 Q171 and not A136 R154 R171), were estimated to be: 0, 0.0008, 0.07, and 0.21 respectively. The model estimated a very low rate of reporting of clinical suspects and a large decline from 2007 of the probability of a sheep being reported as a clinical suspect. The model also estimated that the expected number of sheep holdings with classical scrapie in 2012 was 215 (95% confidence interval: 33-437), out of a total of approximately 72,000 sheep holdings in GB. Model estimates indicate that the prevalence in 2012 has dropped to 10% of that in 2005, showing the effectiveness of the control measures. It also shows a bias in the destination of infected animals, with the majority of infected animals being detected in the fallen stock surveillance stream, and an extremely low proportion of animals detected as clinical suspects; this is very important in terms of the design of surveillance schemes for classical scrapie.
Collapse
Affiliation(s)
- Mark Arnold
- Animal Health and Veterinary Laboratories Agency (AHVLA), The Elms, College Road, Sutton Bonington, Loughborough, LE12 5RB, UK.
| | - Angel Ortiz-Pelaez
- Epidemiology, Surveillance and Risk Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
14
|
Scientific Opinion on the scrapie situation in the EU after 10 years of monitoring and control in sheep and goats. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3781] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Hagenaars TJ. Control of scrapie by selective breeding: what are we getting for free? Vet Rec 2014; 174:528-9. [PMID: 24853707 DOI: 10.1136/vr.g3392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Thomas J Hagenaars
- Central Veterinary Institute, Wageningen University and Research Centre, Lelystad, The Netherlands
| |
Collapse
|