1
|
Mag P, Nemes-Terényi M, Jerzsele Á, Mátyus P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024; 29:4475. [PMID: 39339469 PMCID: PMC11433938 DOI: 10.3390/molecules29184475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Drug innovation traditionally follows a de novo approach with new molecules through a complex preclinical and clinical pathway. In addition to this strategy, drug repositioning has also become an important complementary approach, which can be shorter, cheaper, and less risky. This review provides an overview of drug innovation in both human and veterinary medicine, with a focus on drug repositioning. The evolution of drug repositioning and the effectiveness of this approach are presented, including the growing role of data science and computational modeling methods in identifying drugs with potential for repositioning. Certain business aspects of drug innovation, especially the relevant factors of market exclusivity, are also discussed. Despite the promising potential of drug repositioning for innovation, it remains underutilized, especially in veterinary applications. To change this landscape for mutual benefits of human and veterinary drug innovation, further exploitation of the potency of drug repositioning is necessary through closer cooperation between all stakeholders, academia, industry, pharmaceutical authorities, and innovation policy makers, and the integration of human and veterinary repositioning into a unified innovation space. For this purpose, the establishment of the conceptually new "One Health Drug Repositioning Platform" is proposed. Oncology is one of the disease areas where this platform can significantly support the development of new drugs for human and dog (or other companion animals) anticancer therapies. As an example of the utilization of human and veterinary drugs for veterinary repositioning, the use of COX inhibitors to treat dog cancers is reviewed.
Collapse
Affiliation(s)
- Patrik Mag
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Melinda Nemes-Terényi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| | - Péter Mátyus
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István Street 2, 1078 Budapest, Hungary
| |
Collapse
|
2
|
Beaudu-Lange C, Lange E. Intensive Multimodal Chemotherapy in a Dog Suffering from Grade III/Stage IV Solid Mammary Carcinoma. Animals (Basel) 2024; 14:2618. [PMID: 39272403 PMCID: PMC11394285 DOI: 10.3390/ani14172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Very few studies, often with very small cohorts, have proven chemotherapy efficacy against canine aggressive mammary carcinomas, either in terms of metastasis or median survival, in dogs after surgery and chemotherapy, with such outcomes not being confirmed by other studies. As a result, we lack efficient standardized protocols, which exist in human cases, according to the grade and stage of the tumor in dogs. In this case report, we describe a relapsing grade III solid mammary carcinoma evolving into prominent lymphatic intravascular invasion with multifocal nodal extension (stage IV); we applied an intensive treatment combining radical surgery and intensive adjuvant chemotherapy. The latter combined carboplatin maximal-tolerated-dose chemotherapy, with doses adjusted as necessary, and metronomic chemotherapy with firocoxib, toceranib and chloraminophene, progressively administered and carefully monitored. Adapting the doses prevented adverse events and resulted in 218 days of survival with good quality of life. To our knowledge, this is the first description of such a treatment combination. Our result should be confirmed with a large-scale prospective study.
Collapse
Affiliation(s)
| | - Emmanuel Lange
- Clinique Vétérinaire de la Pierre Bleue, 35550 Pipriac, France
| |
Collapse
|
3
|
Cataldo D, Aravena G, Escobar A, Tapia JC, Peralta OA, Torres CG. Effect of Melatonin on Chemoresistance Exhibited by Spheres Derived from Canine Mammary Carcinoma Cells. Animals (Basel) 2024; 14:1229. [PMID: 38672378 PMCID: PMC11047318 DOI: 10.3390/ani14081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Mammary cancer is a frequent disease in female dogs, where a high proportion of cases correspond to malignant tumors that may exhibit drug resistance. Within the mammary tumor microenvironment, there is a cell subpopulation called cancer stem cells (CSCs), which are capable of forming spheres in vitro and resisting anti-tumor treatments, partly explaining the recurrence of some tumors. Previously, it has been described that spheres derived from canine mammary carcinoma cells CF41.Mg and REM 134 exhibit stemness characteristics. Melatonin has shown anti-tumor effects on mammary tumor cells; however, its effects have been poorly evaluated in canine mammary CSCs. This study aimed to analyze the effect of melatonin on the chemoresistance exhibited by stem-like neoplastic cells derived from canine mammary carcinoma to cytotoxic drugs such as doxorubicin and mitoxantrone. CF41.Mg and REM 134 cells were cultured in high-glucose DMEM supplemented with fetal bovine serum and L-glutamine. The spheres were cultured in ultra-low attachment plates in DMEM/F12 medium without fetal bovine serum and with different growth factors. The CD44+/CD24-/low phenotype was analyzed by flow cytometry. The viability of sphere-derived cells (MTS reduction) was studied in the presence of melatonin (0.1 or 1 mM), doxorubicin, mitoxantrone, and luzindole. In addition, the gene (RT-qPCR) of the multidrug resistance bombs MDR1 and ABCG2 were analyzed in the presence of melatonin. Both cell types expressed the MT1 gene, which encodes the melatonin receptor MT1. Melatonin 1 mM does not modify the CD44+/CD24-/low phenotype; however, the hormone reduced viability (p < 0.0001) only in CF41.Mg spheres, without inducing an additive effect when co-incubated with cytotoxic drugs. These effects were independent of the binding of the hormone to its receptor MT1, since, by pharmacologically inhibiting them, the effect of melatonin was not blocked. In CF41.Mg spheres, the relative gene expression of ABCG2 and MDR1 was decreased in response to the hormone (p < 0.001). These results indicate that melatonin negatively modulates the cell survival of spheres derived from CF41.Mg cells, in a way that is independent of its MT1 receptor. These effects did not counteract the resistance to doxorubicin and mitoxantrone, even though the hormone negatively regulates the gene expression of MDR1 and ABCG2.
Collapse
Affiliation(s)
- Dania Cataldo
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
- Laboratory of Biomedicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| | - Guillermo Aravena
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
| | - Alejandro Escobar
- Laboratory of Cell and Molecular Biology, Dental Sciences Research Institute, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
| | - Julio C. Tapia
- Cell and Molecular Biology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Oscar A. Peralta
- School of Veterinary Medicine, Pontificia Universidad Catolica de Chile, Santiago 7820435, Chile;
| | - Cristian G. Torres
- Centralized Laboratory of Veterinary Research, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile; (D.C.); (G.A.)
- Laboratory of Biomedicine, Department of Clinical Sciences, Faculty of Animal and Veterinary Sciences, Universidad de Chile, Santiago 8820808, Chile
| |
Collapse
|
4
|
Nosalova N, Huniadi M, Horňáková Ľ, Valenčáková A, Horňák S, Nagoos K, Vozar J, Cizkova D. Canine Mammary Tumors: Classification, Biomarkers, Traditional and Personalized Therapies. Int J Mol Sci 2024; 25:2891. [PMID: 38474142 DOI: 10.3390/ijms25052891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, many studies have focused their attention on the dog as a proper animal model for human cancer. In dogs, mammary tumors develop spontaneously, involving a complex interplay between tumor cells and the immune system and revealing several molecular and clinical similarities to human breast cancer. In this review, we summarized the major features of canine mammary tumor, risk factors, and the most important biomarkers used for diagnosis and treatment. Traditional therapy of mammary tumors in dogs includes surgery, which is the first choice, followed by chemotherapy, radiotherapy, or hormonal therapy. However, these therapeutic strategies may not always be sufficient on their own; advancements in understanding cancer mechanisms and the development of innovative treatments offer hope for improved outcomes for oncologic patients. There is still a growing interest in the use of personalized medicine, which should play an irreplaceable role in the research not only in human cancer therapy, but also in veterinary oncology. Moreover, immunotherapy may represent a novel and promising therapeutic option in canine mammary cancers. The study of novel therapeutic approaches is essential for future research in both human and veterinary oncology.
Collapse
Affiliation(s)
- Natalia Nosalova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Slavomir Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Kamil Nagoos
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Juraj Vozar
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia
| |
Collapse
|
5
|
Ke CH, Lin CN, Lin CS. Hormone, Targeted, and Combinational Therapies for Breast Cancers: From Humans to Dogs. Int J Mol Sci 2024; 25:732. [PMID: 38255807 PMCID: PMC10815110 DOI: 10.3390/ijms25020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women. In female dogs, canine mammary gland tumor (CMT) is also the leading neoplasm. Comparative oncology indicates similar tumor behaviors between human BCs (HBCs) and CMTs. Therefore, this review summarizes the current research in hormone and targeted therapies and describes the future prospects for HBCs and CMTs. For hormone receptor-expressing BCs, the first medical intervention is hormone therapy. Monoclonal antibodies against Her2 are proposed for the treatment of Her2+ BCs. However, the major obstacle in hormone therapy or monoclonal antibodies is drug resistance. Therefore, increasing alternatives have been developed to overcome these difficulties. We systemically reviewed publications that reported inhibitors targeting certain molecules in BC cells. The various treatment choices for humans decrease mortality in females with BC. However, the development of hormone or targeted therapies in veterinary medicine is still limited. Even though some clinical trials have been proposed, severe side effects and insufficient case numbers might restrict further explorations. This difficulty highlights the urgent need to develop updated hormone/targeted therapy or novel immunotherapies. Therefore, exploring new therapies to provide more precise use in dogs with CMTs will be the focus of future research. Furthermore, due to the similarities shared by humans and dogs, well-planned prospective clinical trials on the use of combinational or novel immunotherapies in dogs with CMTs to obtain solid results for both humans and dogs can be reasonably anticipated in the future.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Chae HK, Oh YI, Lim GH, Jung YC, Park SH, An JH, Park SM, Seo KW, Chu SN, Li Q, Youn HY. Anti-cancer effects of DHP107 on canine mammary gland cancer examined through in-vitro and in-vivo mouse xenograft models. BMC Vet Res 2024; 20:3. [PMID: 38172758 PMCID: PMC10763473 DOI: 10.1186/s12917-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Canine mammary gland cancer (CMGC) is a common neoplasm in intact bitches. However, the benefit of adjuvant chemotherapy is unclear. The aim of this study was to investigate the anti-proliferative effects of paclitaxel on CMGC in in-vitro and in-vivo settings. RESULTS Paclitaxel dose-dependently inhibited viability and induced G2/M phase cell cycle arrest and apoptosis in both primary and metastatic CMGC cell lines (CIPp and CIPm). In animal experiments, the average tumour volume decreased significantly in proportion to the administered oral paclitaxel dose. By examining tumour tissue using a TUNEL assay and immunohistochemical staining with anti-CD31 as a marker of endothelial differentiation, respectively, it was confirmed that oral paclitaxel induced apoptosis and exerted an anti-angiogenetic effect in tumour tissues. Further, downregulation of cyclin D1 in tumour tissues suggested that oral paclitaxel induced cell cycle arrest in tumour tissues in-vivo. CONCLUSIONS Our results suggest that paclitaxel may have anti-cancer effects on CMGC through cell cycle arrest, induction of apoptosis, and anti-angiogenesis. This study could provide a novel approach to treat CMGC.
Collapse
Affiliation(s)
- Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Veterinary Internal Medicine, Western Referral Animal Medical Center, Seoul, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ga-Hyun Lim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Chan Jung
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sungnam, Republic of Korea
| | - Seol-Hee Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Hyun An
- Department of Veterinary Emergency and Critical Care Medicine and Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung-Nam Chu
- Pangyo Research Laboratory, DaeHwa Pharmaceutical Co. Ltd, Sungnam, Republic of Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin, 133000, China.
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Vazquez E, Lipovka Y, Cervantes-Arias A, Garibay-Escobar A, Haby MM, Queiroga FL, Velazquez C. Canine Mammary Cancer: State of the Art and Future Perspectives. Animals (Basel) 2023; 13:3147. [PMID: 37835752 PMCID: PMC10571550 DOI: 10.3390/ani13193147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mammary cancer is the most frequently diagnosed neoplasia in women and non-spayed female dogs and is one of the leading causes of death in both species. Canines develop spontaneous mammary tumors that share a significant number of biological, clinical, pathological and molecular characteristics with human breast cancers. This review provides a detailed description of the histological, molecular and clinical aspects of mammary cancer in canines; it discusses risk factors and currently available diagnostic and treatment options, as well as remaining challenges and unanswered questions. The incidence of mammary tumors is highly variable and is impacted by biological, pathological, cultural and socioeconomic factors, including hormonal status, breed, advanced age, obesity and diet. Diagnosis is mainly based on histopathology, although several efforts have been made to establish a molecular classification of canine mammary tumors to widen the spectrum of treatment options, which today rely heavily on surgical removal of tumors. Lastly, standardization of clinical study protocols, development of canine-specific biological tools, establishment of adequate dog-specific disease biomarkers and identification of targets for the development of new therapies that could improve survival and have less adverse effects than chemotherapy are among the remaining challenges.
Collapse
Affiliation(s)
- Eliza Vazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Alejandro Cervantes-Arias
- Department of Small Animal Medicine and Surgery, Small Animal Teaching Hospital, The National University of Mexico (UNAM), Ciudad Universitaria, Investigación Científica 3000, Coyoacán, Mexico City 04360, Mexico;
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Michelle M. Haby
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| | - Felisbina Luisa Queiroga
- CECAV—Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo 83000, Mexico; (E.V.); (Y.L.); (A.G.-E.); (M.M.H.)
| |
Collapse
|
8
|
Yang Y, Mei C, Xian H, Zhang X, Li J, Liang ZX, Zhi Y, Ma Y, Wang HJ. Toosendanin-induced apoptosis of CMT-U27 is mediated through the mitochondrial apoptotic pathway. Vet Comp Oncol 2023; 21:315-326. [PMID: 36809669 DOI: 10.1111/vco.12889] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Toosendanin (TSN) is an active compound from the fruit of Melia toosendan Sieb et Zucc. TSN has been shown to have broad-spectrum anti-tumour activities in human cancers. However, there are still many gaps in the knowledge of TSN on canine mammary tumours (CMT). CMT-U27 cells were used to select the optimal acting time and best concentration of TSN to initiate apoptosis. Cell proliferation, cell colony formation, cell migration and cell invasion were analysed. The expression of apoptosis-related genes and proteins were also detected to explore the mechanism of action of TSN. A murine tumour model was established to detect the effect of TSN treatments. The results showed that TSN decreased cell viability of migration and invasion, altered CMT-U27 cell morphology, and inhibited DNA synthesis. TSN-induced cell apoptosis by upregulating BAX, cleaved caspase-3, cleaved caspase-9, p53 and cytochrome C (cytosolic) protein expression, and downregulating Bcl-2 and cytochrome C (mitochondrial) expression. In addition, TSN increased the mRNA transcription levels of cytochrome C, p53 and BAX, and decreased the mRNA expression of Bcl-2. Furthermore, TSN inhibited the growth of CMT xenografts by regulating the expression of genes and proteins activated by the mitochondrial apoptotic pathway. In conclusion, TSN effectively inhibited cell proliferation, migration and invasion activity, as well as induced CMT-U27 cell apoptosis. The study provides a molecular basis for the development of clinical drugs and other therapeutic options.
Collapse
Affiliation(s)
- Yin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Jun Li
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Zhi-Xuan Liang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yue Ma
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Hong-Jun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
9
|
Canine mammary carcinoma: current therapeutic targets and future perspectives – a review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Canine mammary carcinoma (CMC) is the most common neoplasm in bitches, and it shares many biological similarities with breast cancer in humans. Drug resistance, high epigenetic mutations, and relapse rates are among the challenges which eventually urge the need for a veterinary oncologist to discover new therapeutic approaches that are more effective and safer. Therefore, in this review, we also cover the current therapeutic strategies from human medicine for the future perspectives of tumor immunotherapy in veterinary medicine. These strategies have great potential to be employed as therapeutic or prophylactic options due to their ability to modulate a specific and potent immune response against CMC. As we acquire a better understanding of canine tumor immunology, we can move towards a brighter prognosis. Additionally, we report on the recent successful studies in breast cancer that may benefit canines as well.
Collapse
|
10
|
Vieira TC, Oliveira EA, dos Santos BJ, Souza FR, Veloso ES, Nunes CB, Del Puerto HL, Cassali GD. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology. Front Vet Sci 2022; 9:983110. [PMID: 36172611 PMCID: PMC9510711 DOI: 10.3389/fvets.2022.983110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pure human and canine mammary invasive micropapillary carcinoma is a rare malignant epithelial tumor accounting for 0.9 to 2% of all invasive mammary carcinomas and present a high rate of lymphatic invasion and metastasis, with unfavorable prognosis. Surgery and chemotherapy are standard treatments for almost all mammary cancer in both species, as well as hormonal and target therapies available for human patients. However, depending on the patient's clinical staging, satisfactory therapeutic results for invasive micropapillary carcinoma are a challenge due to its high capacity of invasion and metastasis. Cyclooxygenase-2 (COX-2) isoform is an important enzyme stimulated by cytokines, growth factors and oncogenes activation to synthetizes prostaglandins in inflammatory process. COX-2 overexpression is associated with angiogenesis and invasion and contributes to cancer development, disease progression, tumor recurrence and regional lymph node metastasis in human and canine mammary carcinomas. This enzyme can be targeted by non-steroidal anti-inflammatory drugs and its inhibition can reduce tumor growth and metastasis in several cancer types. Given the similarity between both species, the present study aims to elucidate the involvement of COX-2 mRNA and protein expression in canine (cIMPC) and human (hIMPC) pure invasive mammary micropapillary carcinoma, with clinicopathological and survival data. Twenty-nine cases of cIMPC and 17 cases of hIMPC were analyzed regarding histologic type, grade, age, tumor size, lymph node condition, extracapsular extension, inflammatory infiltrate and immunophenotype. When available, information on adjuvant treatment, recurrence, metastasis and overall survival were collected. The present study demonstrated COX-2 protein expression in 65.5% of cIMPC and 92.3% of hIMPC, and an association with more advanced histological grades in bitches and higher Ki67 in women. COX-2 mRNA expression was significantly higher in cIMPC than in hIMPC, and its expression was not associated with COX-2 protein expression in both species. COX-2 mRNA expression was associated with negative-ER hIMPC as well as higher Ki67. cIMPC demonstrated proportional early development, more regional metastasis, and a prevalence of negative estrogen receptor, than hIMPC. This is the first time COX-2 expression is associated with negative prognostic factors in both cIMPC and hIMPC, besides the overexpression of COX-2 protein in such unfavorable histological type, which suggests that COX-2 can act as a potential target in IMPC.
Collapse
Affiliation(s)
- Thaynan Cunha Vieira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bárbara Jaime dos Santos
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Buzelin Nunes
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen Lima Del Puerto
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Geovanni Dantas Cassali
| |
Collapse
|
11
|
Valdivia G, Alonso-Diez Á, Alonso-Miguel D, Suárez M, García P, Ortiz-Díez G, Pérez-Alenza MD, Peña L. Epitheliosis is a histopathological finding associated with malignancy and poor prognosis in dogs with mammary tumors. Vet Pathol 2022; 59:747-758. [PMID: 35451346 DOI: 10.1177/03009858221092013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Canine mammary epitheliosis (ME) is a poorly studied dysplasia that may have premalignant potential. In this study, the clinicopathological relevance of ME was prospectively studied in 90 female dogs with mammary tumors (MTs) that underwent radical mastectomy. ME distribution, extent, and coexistence with benign and malignant MTs were evaluated for each case (505 mammary glands). ME was macroscopically undetectable and was present in 47/90 (52%) cases, frequently bilateral. In dogs with malignant MTs and ME, diffuse ME throughout the mammary chain was present in 10/39 (26%) cases. A histological ME-carcinoma transition was evident in certain histotypes. By immunohistochemistry (AE1/AE3, cytokeratin 14 [CK-14], CK-8/18, vimentin, calponin, p63, Ki-67, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2), ME was a slow-growing, triple-negative process with a strong predominance of basal-like nonmyoepithelial cells. ME was associated with older dogs (P = .016), malignant tumors (P = .044), worse clinical stages (P = .013), lymph node metastasis (LNM, P = .021), higher histological grade tumors (P = .035), and shorter overall survival (OS) in univariate analysis (P = .012). Interestingly, ME was distantly located to the malignant tumor in most cases (P = .007). In multivariate analyses, LNM (P = .005), histological grade (P = .006), and tumor size (P = .006) were independent predictors of OS. For the pathologist, the observation of ME should be clearly stated in the MT biopsy report to alert the surgeon/oncologist. Given the differences between canine ME and its human histopathological counterpart (atypical ductal hyperplasia), "epitheliosis" should remain the preferred term for the dog.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura Peña
- Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Sabbieti MG, Marchegiani A, Sufianov AA, Gabai VL, Shneider A, Agas D. P62/SQSTM1 beyond Autophagy: Physiological Role and Therapeutic Applications in Laboratory and Domestic Animals. Life (Basel) 2022; 12:life12040539. [PMID: 35455030 PMCID: PMC9025487 DOI: 10.3390/life12040539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammation is the preceding condition for the development of mild and severe pathological conditions, including various forms of osteopenia, cancer, metabolic syndromes, neurological disorders, atherosclerosis, cardiovascular, lung diseases, etc., in human and animals. The inflammatory status is induced by multifarious intracellular signaling cascades, where cytokines, chemokines, arachidonic acid metabolites, adhesion molecules, immune cells and other components foster a “slow burn” at a local or systemic level. Assuming that countering inflammation limits the development of inflammation-based diseases, a series of new side-effects-free therapies was assessed in experimental and domestic animals. Within the targets of the drug candidates for quenching inflammation, an archetypal autophagic gear, the p62/sqstm1 protein, has currently earned attention from researchers. Intracellular p62 has been recently coined as a multi-task tool associated with autophagy, bone remodeling, bone marrow integrity, cancer progression, and the maintenance of systemic homeostasis. Accordingly, p62 can act as an effective suppressor of inflamm-aging, reducing oxidative stress and proinflammatory signals. Such an operational schedule renders this protein an effective watchdog for degenerative diseases and cancer development in laboratory and pet animals. This review summarizes the current findings concerning p62 activities as a molecular hub for cell and tissues metabolism and in a variety of inflammatory diseases and other pathological conditions. It also specifically addresses the applications of exogenous p62 (DNA plasmid) as an anti-inflammatory and homeostatic regulator in the treatment of osteoporosis, metabolic syndrome, age-related macular degeneration and cancer in animals, and the possible application of p62 plasmid in other inflammation-associated diseases.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
| | - Albert A. Sufianov
- Federal Center of Neurosurgery, 625032 Tyumen, Russia;
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alexander Shneider
- CureLab Oncology Inc., Dedham, MA 02026, USA; (V.L.G.); (A.S.)
- Department of Molecular Biology, Ariel University, Ariel 40700, Israel
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (M.G.S.); (A.M.)
- Correspondence:
| |
Collapse
|
13
|
Panja K, Buranapraditkun S, Roytrakul S, Kovitvadhi A, Lertwatcharasarakul P, Nakagawa T, Limmanont C, Jaroensong T. Scorpion Venom Peptide Effects on Inhibiting Proliferation and Inducing Apoptosis in Canine Mammary Gland Tumor Cell Lines. Animals (Basel) 2021; 11:ani11072119. [PMID: 34359246 PMCID: PMC8300387 DOI: 10.3390/ani11072119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
The most common neoplasms in intact female dogs are CMGTs. BmKn-2, an antimicrobial peptide, is derived from scorpion venom and has published anticancer effects in oral and colon human cancer cell lines. Thus, it is highly likely that BmKn-2 could inhibit CMGT cell lines which has not been previously reported. This study investigated the proliferation and apoptotic properties of BmKn-2 via Bax and Bcl-2 relative gene expression in two CMGT cell lines, metastatic (CHMp-5b) and non-metastatic (CHMp-13a). The results showed that BmKn-2 inhibited proliferation and induced apoptosis in the CMGT cell lines. The cell morphology clearly changed and increased apoptosis in a dose dependent of manner. The half maximum inhibitory concentration (IC50) was 30 µg/mL for CHMp-5b cell line and 54 µg/mL for CHMp-13a cell line. The induction of apoptosis was mediated through Bcl-2 and Bax expression after BmKn-2 treatment. In conclusion, BmKn-2 inhibited proliferation and induced apoptosis in both CHMp-5b and CHMp-13a cell lines via down-regulation of Bcl-2 and up-regulation of Bax relative mRNA expression. Therefore, BmKn-2 could be feasible as candidate treatment for CMGTs.
Collapse
Affiliation(s)
- Kamonporn Panja
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Bangpra, Chonburi 20110, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Chunsumon Limmanont
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
| | - Tassanee Jaroensong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
- Correspondence: ; Tel.: +66-86-797-4270
| |
Collapse
|
14
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Cyclooxygenase-2 as a Biomarker with Diagnostic, Therapeutic, Prognostic, and Predictive Relevance in Small Animal Oncology. J Vet Res 2020; 64:151-160. [PMID: 32258812 PMCID: PMC7105978 DOI: 10.2478/jvetres-2020-0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
In canine and feline populations, the number of neoplasm cases continues to increase around the world. Attempts are being made in centres of research to identify new biomarkers that speed up and improve the quality of oncological diagnostics and therapy in human and animal tumour patients. Cyclooxygenase-2 (COX-2) is a promising biomarker with increasing relevance to human oncology, but as yet with less application in veterinary oncology. The expression of COX-2 increases significantly during pathological processes involving inflammation, pain or fever. It is also overexpressed in humans presenting various types of tumours and in selected types of tumours in animals, particularly in dogs. This article discusses the expression of COX-2 in canine and feline tumours, the importance of COX-2 as a biomarker with diagnostic, therapeutic, prognostic and predictive relevance in oncology, and the clinical significance of inhibiting COX-2 overexpression in tumours.
Collapse
|
16
|
Packeiser EM, Hewicker-Trautwein M, Thiemeyer H, Mohr A, Junginger J, Schille JT, Murua Escobar H, Nolte I. Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis. PLoS One 2020; 15:e0230272. [PMID: 32168360 PMCID: PMC7069630 DOI: 10.1371/journal.pone.0230272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) of prostate and urinary bladder are highly invasive and metastatic tumors of closely neighbored organs. Cell lines are valuable tools to investigate tumor mechanisms and therapeutic approaches in vitro. PAC in dogs is infrequent, difficult to differentiate from TCC and usually characterized by poor prognosis, enhancing the value of the few available cell lines. However, as cell lines adapt to culturing conditions, a thorough characterization, ideally compared to original tissue, is indispensable. Herein, six canine PAC cell lines and three TCC cell lines were profiled by immunophenotype in comparison to respective original tumor tissues. Three of the six PAC cell lines were derived from primary tumor and metastases of the same patient. Further, two of the three TCC cell lines were derived from TCCs invading into or originating from the prostate. Cell biologic parameters as doubling times and chemoresistances to commonly used drugs in cancer treatment (doxorubicin, carboplatin and meloxicam) were assessed. All cell lines were immunohistochemically close to the respective original tissue. Compared to primary tumor cell lines, metastasis-derived cell lines were more chemoresistant to doxorubicin, but equally susceptive to carboplatin treatment. Two cell lines were multiresistant. COX-2 enzyme activity was demonstrated in all cell lines. However, meloxicam inhibited prostaglandin E2 production in only seven of nine cell lines and did neither influence metabolic activity, nor proliferation. The characterized nine cell lines represent excellent tools to investigate PAC as well as TCC in prostate and urinary bladder of the dog. Furthermore, the profiled paired cell lines from PAC primary tumor and metastasis provide the unique opportunity to investigate metastasis-associated changes PAC cells undergo in tumor progression. The combination of nine differently chemoresistant PAC and TCC cell lines resembles the heterogeneity of canine lower urinary tract cancer.
Collapse
Affiliation(s)
- Eva-Maria Packeiser
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | | | - Heike Thiemeyer
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Annika Mohr
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Johannes Junginger
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
| | - Hugo Murua Escobar
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Centre Rostock, Rostock, Germany
- * E-mail: (HME); (IN)
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail: (HME); (IN)
| |
Collapse
|
17
|
Levi M, Peña L, Alonso-Díez A, Brunetti B, Muscatello LV, Benazzi C, Pérez-Alenza MD, Sarli G. P-Glycoprotein and Breast Cancer Resistance Protein in Canine Inflammatory and Noninflammatory Grade III Mammary Carcinomas. Vet Pathol 2019; 56:840-847. [PMID: 31526115 DOI: 10.1177/0300985819868647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) expression are frequently related to multidrug resistance (MDR) in neoplastic cells. Canine inflammatory and grade III noninflammatory mammary carcinomas (IMC and non-IMC) are aggressive tumors that could benefit from chemotherapy. This study describes the immunohistochemical detection of P-gp and BCRP in 20 IMCs and 18 non-IMCs from dogs that had not received chemotherapy. Our aim was to determine if P-gp and BCRP expression was related to the "inflammatory" phenotype, to establish a basis for future studies analyzing the response to chemotherapy in dogs with highly malignant mammary cancer. Immunolabeling was primarily membranous for P-gp with a more intense labeling in emboli, and immunolabeling was membranous and cytoplasmic for BCRP. P-gp was expressed in 17 of 20 (85%) IMCs compared to 7 of 18 (39%) non-IMCs (P = 0.006). BCRP was expressed within emboli in 15 of 19 (79%) emboli in IMC, 12 of 15 (80%) primary IMCs, and 12 of 18 (67%) non-IMCs, without statistically significant differences (P > .05). All IMCs and 67% of non-IMCs expressed at least 1 of the 2 transporters, and 63% (12/19) of IMCs and 39% (7/18) of non-IMCs expressed both P-gp and BCRP. P-gp and BCRP evaluation might help select patients for chemotherapy. P-gp, expressed in a significantly higher percentage of IMCs vs non-IMCs, might play a specific role in the chemoresistance of IMC.
Collapse
Affiliation(s)
- Michela Levi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Laura Peña
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Angela Alonso-Díez
- Department of Animal Medicine, Surgery and Pathology, Complutense University of Madrid, Madrid, Spain
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cinzia Benazzi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Sorenmo KU, Durham AC, Kristiansen V, Pena L, Goldschmidt MH, Stefanovski D. Developing and testing prognostic bio-scoring systems for canine mammary gland carcinomas. Vet Comp Oncol 2019; 17:479-488. [PMID: 31099972 DOI: 10.1111/vco.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022]
Abstract
Canine mammary carcinomas (CMC) represent a range of histolopathological subtypes with diverse biological behaviours. Several individual factors, including stage, grade, subtypes and presence of invasion, predict outcome. Less is known how these factors interact and impact prognosis. The purpose of this work was to develop and test comprehensive bio-scoring systems in CMCs. Clinical and histopathological data from 127 dogs with MCs treated through two prospective studies were obtained. All dogs underwent standardized pre-surgical staging, treatments and regular follow-up visits. All tumours were evaluated, classified and graded according to published guidelines. Time to primary metastasis was the main endpoint in this study. Two bio-scoring systems were developed: The multivariate scoring (MVS) was based on traditional statistical analysis where only factors significant in the multivariate analysis (tumour size and grade) were kept for the final model. The refined flexible scoring (RFS) system was based on results from subgroup analysis, which guided the development of a flexible system. Progressive worsening prognosis was observed with increasing bio-scores in both systems. MVS: Median primary metastasis-free survival (TTM1 days) was not reached in dogs with bio-scores 0 to 5, 10, 15 and 648, 149, 317, in MVS groups 25, 30, 40, respectively. Similarly, TTM1 was not reached in dogs with RFS 0, 1, 2 and 374, 407 and 149, in dogs with bio-scores 3, 4, 5, respectively. However, a more distinct separation between dogs with high risk vs low risk for metastasis was observed with RFS, suggesting superior overall prognostication regarding the risk for metastasis.
Collapse
Affiliation(s)
- Karin U Sorenmo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C Durham
- Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veronica Kristiansen
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Laura Pena
- Department of Animal Medicine Surgery and Pathology, Veterinary School. Complutense University of Madrid, Madrid, Spain
| | - Michael H Goldschmidt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania
| |
Collapse
|
19
|
Szweda M, Rychlik A, Babińska I, Pomianowski A. Significance of Cyclooxygenase-2 in Oncogenesis. J Vet Res 2019; 63:215-224. [PMID: 31276061 PMCID: PMC6598184 DOI: 10.2478/jvetres-2019-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyses the first stage of biosynthesis of prostanoids, proteins that are implicated in various physiological and pathological processes in humans and animals. The expression of COX-2 increases significantly during pathological processes accompanied by inflammation, pain and fever. Overexpression of COX-2 was determined in tumour tissues, which suggests that this enzyme participates in oncogenesis. In this paper the topics discussed are mechanisms regulating COX-2 expression, COX isoforms, their role in the body and the oncogenic mechanisms triggered by the overexpression of COX-2, including inhibition of apoptosis, intensification of neoangiogenesis, increased metastatic capacity, and weakening of the immune system. The significance of and the mechanisms by which COX-2 participates in oncogenesis have been studied intensively in recent years. The results are highly promising, and they expand our understanding of the complex processes and changes at the molecular, cellular and tissue level that promote oncogenesis and cancer progression. Notwithstanding the knowledge already gleaned, many processes and mechanisms have not yet been elucidated in human medicine and, in particular, in veterinary medicine. Further research is required to develop effective tumour diagnostic methods and treatment procedures for humans and animals.
Collapse
Affiliation(s)
- Marta Szweda
- Department of Internal Diseases with Clinic, 10-719Olsztyn, Poland
| | | | - Izabella Babińska
- Department of Pathophysiology, Forensic Medicine, and Administration Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | | |
Collapse
|
20
|
Zambrano-Estrada X, Landaverde-Quiroz B, Dueñas-Bocanegra AA, De Paz-Campos MA, Hernández-Alberto G, Solorio-Perusquia B, Trejo-Mandujano M, Pérez-Guerrero L, Delgado-González E, Anguiano B, Aceves C. Molecular iodine/doxorubicin neoadjuvant treatment impair invasive capacity and attenuate side effect in canine mammary cancer. BMC Vet Res 2018. [PMID: 29530037 PMCID: PMC5848438 DOI: 10.1186/s12917-018-1411-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Mammary cancer has a high incidence in canines and is an excellent model of spontaneous carcinogenesis. Molecular iodine (I2) exerts antineoplastic effects on different cancer cells activating re-differentiation pathways. In co-administration with anthracyclines, I2 impairs chemoresistance installation and prevents the severity of side effects generated by these antineoplastic drugs. This study is a random and double-blind protocol that analyzes the impact of I2 (10 mg/day) in two administration schemes of Doxorubicin (DOX; 30 mg/m2) in 27 canine patients with cancer of the mammary gland. The standard scheme (sDOX) includes four cycles of DOX administered intravenously for 20 min every 21 days, while the modified scheme (mDOX) consists of more frequent chemotherapy (four cycles every 15 days) with slow infusion (60 min). In both schemes, I2 or placebo (colored water) was supplemented daily throughout the treatment. Results mDOX attenuated the severity of adverse events (VCOG-CTCAE) in comparison with the sDOX group. The overall tumor response rate (RECIST criteria) for all dogs was 18% (interval of reduction 48–125%), and no significant difference was found between groups. I2 supplementation enhances the antineoplastic effect in mDOX, exhibiting a significant decrease in the tumor epithelial fraction, diminished expression of chemoresistance (MDR1 and Survivin) and invasion (uPA) markers and enhanced expression of the differentiation factor known as peroxisome proliferator-activated receptors type gamma (PPARγ). Significant tumor lymphocytic infiltration was also observed in both I2-supplemented groups. The ten-month survival analysis showed that the entire I2 supplementation (before and after surgery) induced 67–73% of disease-free survival, whereas supplementation in the last period (only after surgery) produced 50% in both schemes. Conclusions The mDOX+I2 scheme improves the therapeutic outcome, diminishes the invasive capacity, attenuates the adverse events and increases disease-free survival. These data led us to propose mDOX+I2 as an effective treatment for canine mammary cancer.
Collapse
Affiliation(s)
- Xóchitl Zambrano-Estrada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Brianda Landaverde-Quiroz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Andrés A Dueñas-Bocanegra
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marco A De Paz-Campos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Hernández-Alberto
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Laura Pérez-Guerrero
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Mexico City, Mexico
| | - Evangelina Delgado-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Brenda Anguiano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, CP 76230, Querétaro, Mexico.
| |
Collapse
|
21
|
Iturriaga MP, Paredes R, Arias JI, Torres CG. Meloxicam decreases the migration and invasion of CF41.Mg canine mammary carcinoma cells. Oncol Lett 2017; 14:2198-2206. [PMID: 28781660 PMCID: PMC5530185 DOI: 10.3892/ol.2017.6400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclooxygenase (COX)-2 expression is positively correlated with malignant features in canine mammary carcinomas. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity and may therefore possess anticancer effects. Meloxicam is an NSAID that is widely used in human and veterinary medicine. High concentrations of meloxicam have been reported to be antitumorigenic in vitro; however, the effect of meloxicam at concentrations that are equivalent to those that can be obtained in vivo remains unknown. In the current study, the in vitro effects of low-dose meloxicam (0.25 µg/ml) on CF41.Mg canine mammary carcinoma cells were evaluated. The effects on cell proliferation, apoptosis, cell migration and invasion, in addition to the expression of different molecules associated with tumor invasiveness were analyzed. No effect on cell viability and apoptosis were observed. However, cell migration and invasion were significantly reduced following treatment with meloxicam. MMP-2 expression and activity were similarly reduced, explaining the impaired cell invasion. In addition, β-catenin expression was downregulated, while its phosphorylation increased. These results indicate that 0.25 µg/ml meloxicam reduces cell migration and invasion, in part through modulating MMP-2 and β-catenin expression. Additional studies are required to elucidate the mechanism associated with the anti-invasive effect of meloxicam on CF41.Mg cells. The results of the present study suggest that meloxicam has a potential adjunctive therapeutic application, which could be useful in controlling the invasion and metastasis of canine mammary carcinomas.
Collapse
Affiliation(s)
- María P Iturriaga
- Laboratory of Ecosystem Health, Faculty of Ecology and Natural Resources, Universidad Andres Bello, Santiago 8370251, Chile
| | - Rodolfo Paredes
- School of Veterinary Medicine, Faculty of Ecology and Natural Resources, Universidad Andres Bello, Santiago 8370251, Chile
| | - Jose I Arias
- Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| | - Cristian G Torres
- Laboratory of Biomedicine and Regenerative Medicine, Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago 8820808, Chile
| |
Collapse
|