1
|
Sharun K, Banu SA, Alifsha B, Abualigah L, Pawde AM, Dhama K, Pal A. Mesenchymal stem cell therapy in veterinary ophthalmology: clinical evidence and prospects. Vet Res Commun 2024; 48:3517-3531. [PMID: 39212813 DOI: 10.1007/s11259-024-10522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mesenchymal stem cell (MSC) therapy presents a promising strategy for treating various ocular conditions in veterinary medicine. This review explores the therapeutic potential of MSCs in managing corneal ulcers, immune-mediated keratitis, chronic superficial keratitis, keratoconjunctivitis sicca, retinal degeneration, and ocular burns in feline, equine, and canine patients. Studies have demonstrated the immunomodulatory and regenerative properties of MSCs, highlighting their ability to mitigate inflammation and promote tissue regeneration. Experimental studies have shown the potential of MSC therapy in reducing corneal opacity and vascularization, indicating significant therapeutic advantages. Delivery methods play a crucial role in optimizing the therapeutic efficacy of MSCs in ocular diseases. Various delivery methods, such as intravitreal injection, subconjunctival injection, topical administration, and scaffold-mediated delivery, are being explored to optimize MSC delivery to the target ocular tissues. Clinical trials have shown significant improvements in clinical signs following MSC therapy, underscoring its efficacy in treating ocular diseases. Additionally, tissue engineering approaches incorporating MSCs, growth factors, and scaffolds offer innovative strategies for corneal regeneration and tissue repair. Despite challenges such as standardization of protocols and long-term safety assessment, ongoing research endeavours seek to unlock the full therapeutic potential of MSC therapy in ocular diseases. Future prospects in MSC therapy involve exploring scaffold and hydrogel-based approaches and cell-free therapies leveraging the bioactive molecules released by MSCs. Continued research and development efforts are essential to unlock the full therapeutic potential of MSCs and realize their transformative impact on ocular diseases in veterinary patients.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan, 32003, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - B Alifsha
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Computer Science Department, Al al-Bayt University, Mafraq, 25113, Jordan
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931, Jordan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - A M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Amar Pal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Rivera Orsini MA, Ozmen EB, Miles A, Newby SD, Springer N, Millis D, Dhar M. Isolation and Characterization of Canine Adipose-Derived Mesenchymal Stromal Cells: Considerations in Translation from Laboratory to Clinic. Animals (Basel) 2024; 14:2974. [PMID: 39457904 PMCID: PMC11503832 DOI: 10.3390/ani14202974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient use of allogeneic MSCs in clinics, the MSCs need to be first tested in vitro. With this study, we paved the way by addressing the in vitro aspects of canine adipose-derived MSCs, considering the limited studies on the clinical use of canine cells. We isolated cAD-MSCs from canine falciform ligament fat and evaluated their viability and proliferation using an MTS assay. Then, we characterized the MSC-specific antigens using immunophenotyping and immunofluorescence and demonstrated their potential for in vitro differentiation. Moreover, we established shipping and cryobanking procedures to lead the study to become an off-the-shelf therapy. During expansion, the cells demonstrated a linear increase in cell numbers, confirming their proliferation quantitatively. The cells showed viability before and after cryopreservation, demonstrating that cell viability can be preserved. From a clinical perspective, the established shipping conditions demonstrated that the cells retain their viability for up to 48 h. This study lays the groundwork for the potential use of allogeneic cAD-MSCs in clinical applications.
Collapse
Affiliation(s)
- Michael A. Rivera Orsini
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Emine Berfu Ozmen
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
- Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alyssa Miles
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Steven D. Newby
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Nora Springer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Darryl Millis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Madhu Dhar
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| |
Collapse
|
3
|
Cho HS, Song WJ, Nam A, Li Q, An JH, Ahn JO, Kim HT, Park SM, Ryu MO, Kim MC, Kim JH, Youn HY. Intravenous injection of allogenic canine mesenchymal stem cells in 40 client-owned dogs: a safety assessment in veterinary clinical trials. BMC Vet Res 2024; 20:375. [PMID: 39174969 PMCID: PMC11340047 DOI: 10.1186/s12917-024-04216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The aim of this study was to evaluate the adverse effects of allogeneic mesenchymal stem cells (MSCs) transplanted via intravenous infusion in dogs and examine their safety. We performed a retrospective analysis of various clinical assessments, including physical examination, blood tests, and radiographs, and monitored the formation of neoplasms during a 6-month follow-up period in 40 client-owned dogs that received intravenous infusion of adipose tissue-derived MSCs (AT-MSCs) for the treatment of various underlying diseases between 2012 and 2018. RESULTS No significant adverse effects of MSC therapy were detected by clinical assessment, blood tests, or radiographic examination in the 6-month follow-up period after the first MSC treatment. Additionally no new neoplasms were observed during this period. CONCLUSIONS To our knowledge, this study is the first to evaluate the safety aspects (≥ 6 months) associated with intravenous allogeneic AT-MSC infusion. These results suggest that allogenic AT-MSC infusion could be a useful and relatively safe therapeutic approach in canines.
Collapse
Affiliation(s)
- Hee-Seon Cho
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, Research Institute of Veterinary Science, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea.
| | - Aryung Nam
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Korea.
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, YanBian University, YanJi, JiLin, China
| | - Ju-Hyun An
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, 24321, Korea
| | - Jin-Ok Ahn
- College of Veterinary Medicine, Institute of Veterinary Science, Kangwon National University, Chuncheon, 24321, Korea
| | - Hyun-Tae Kim
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Su-Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Min-Ok Ryu
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Myung-Chul Kim
- Laboratory of Veterinary Internal Medicine, Research Institute of Veterinary Science, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Ju-Hun Kim
- BioApplications Inc., Seoul, 04174, Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
4
|
Williams ZJ, Pezzanite LM, Chow L, Rockow M, Dow SW. Evaluation of stem-cell therapies in companion animal disease models: a concise review (2015-2023). Stem Cells 2024; 42:677-705. [PMID: 38795363 DOI: 10.1093/stmcls/sxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 05/27/2024]
Abstract
Companion animals in veterinary medicine develop multiple naturally occurring diseases analogous to human conditions. We previously reported a comprehensive review on the feasibility, safety, and biologic activity of using novel stem cell therapies to treat a variety of inflammatory conditions in dogs and cats (2008-2015) [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The purpose of this review is to provide an updated summary of current studies in companion animal disease models that have evaluated stem cell therapeutics that are relevant to human disease. Here we have reviewed the literature from 2015 to 2023 for publications on stem cell therapies that have been evaluated in companion animals, including dogs, cats, and horses. The review excluded case reports or studies performed in experimentally induced models of disease, studies involving cancer, or studies in purpose-bred laboratory species such as rodents. We identified 45 manuscripts meeting these criteria, an increase from 19 that were described in the previous review [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The majority of studies were performed in dogs (n = 28), with additional studies in horses (n = 9) and cats (n = 8). Disease models included those related to musculoskeletal disease (osteoarthritis and tendon/ligament injury), neurologic disease (canine cognitive dysfunction, intervertebral disc disease, spinal cord injury) gingival/dental disease (gingivostomatitis), dermatologic disease (atopic dermatitis), chronic multi-drug resistant infections, ophthalmic disease (keratoconjunctivitis sicca, eosinophilic keratitis, immune-mediated keratitis), cardiopulmonary disease (asthma, degenerative valve disease, dilated cardiomyopathy), gastrointestinal disease (inflammatory bowel disease, chronic enteropathy), and renal disease (chronic kidney disease). The majority of studies reported beneficial responses to stem cell treatment, with the exception of those related to more chronic processes such as spinal cord injury and chronic kidney disease. However, it should also be noted that 22 studies were open-label, baseline-controlled trials and only 12 studies were randomized and controlled, making overall study interpretation difficult. As noted in the previous review, improved regulatory oversight and consistency in manufacturing of stem cell therapies are needed. Enhanced understanding of the temporal course of disease processes using advanced-omics approaches may further inform mechanisms of action and help define appropriate timing of interventions. Future directions of stem-cell-based therapies could include use of stem-cell-derived extracellular vesicles, or cell conditioning approaches to direct cells to specific pathways that are tailored to individual disease processes and stages of illness.
Collapse
Affiliation(s)
- Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
5
|
Picazo RA, Rojo C, Rodriguez-Quiros J, González-Gil A. Current Advances in Mesenchymal Stem Cell Therapies Applied to Wounds and Skin, Eye, and Neuromuscular Diseases in Companion Animals. Animals (Basel) 2024; 14:1363. [PMID: 38731367 PMCID: PMC11083242 DOI: 10.3390/ani14091363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a very promising alternative tool in cell therapies and regenerative medicine due to their ease of obtaining from various tissues and their ability to differentiate into different cell types. This manuscript provides a review of current knowledge on the use of MSC-based therapies as an alternative for certain common pathologies in dogs and cats where conventional treatments are ineffective. The aim of this review is to assist clinical veterinarians in making decisions about the suitability of each protocol from a clinical perspective, rather than focusing solely on research. MSC-based therapies have shown promising results in certain pathologies, such as spinal cord injuries, wounds, and skin and eye diseases. However, the effectiveness of these cell therapies can be influenced by a wide array of factors, leading to varying outcomes. Future research will focus on designing protocols and methodologies that allow more precise and effective MSC treatments for each case.
Collapse
Affiliation(s)
- Rosa Ana Picazo
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Concepción Rojo
- Department of Anatomy and Embryology, School of Veterinary Medicine, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Jesus Rodriguez-Quiros
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alfredo González-Gil
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
6
|
Kim SW, Lim KM, Cho SG, Ryu B, Kim CY, Park SY, Jang K, Jung JH, Park C, Choi C, Kim JH. Efficacy of Allogeneic and Xenogeneic Exosomes for the Treatment of Canine Atopic Dermatitis: A Pilot Study. Animals (Basel) 2024; 14:282. [PMID: 38254451 PMCID: PMC10812568 DOI: 10.3390/ani14020282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Canine atopic dermatitis (CAD) is a genetically predisposed inflammatory pruritic skin disease. The available treatments for CAD have several adverse effects and vary in efficacy, indicating the need for the development of improved treatments. In this study, we aimed to elucidate the therapeutic effects of allogeneic and xenogeneic exosomes on CAD. Six laboratory beagle dogs with CAD were randomly assigned to three treatment groups: control, canine exosome (cExos), or human exosome (hExos) groups. Dogs in the cExos and hExos groups were intravenously administered 1.5 mL of cExos (5 × 1010) and hExos (7.5 × 1011) solutions, respectively, while those in the control group were administered 1.5 mL of normal saline three times per week for 4 weeks. Skin lesion score and transepidermal water loss decreased in cExos and hExos groups compared with those in the control group. The exosome treatments decreased the serum levels of inflammatory cytokines (interferon-γ, interleukin-2, interleukin-4, interleukin-12, interleukin-13, and interleukin-31) but increased those of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-β), indicating the immunomodulatory effect of exosomes. Skin microbiome analysis revealed that the exosome treatments alleviated skin bacterial dysbiosis. These results suggest that allogeneic and xenogeneic exosome therapy may alleviate CAD in dogs.
Collapse
Affiliation(s)
- Sang-Won Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Kyung-Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (K.-M.L.); (S.-G.C.)
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Republic of Korea; (K.-M.L.); (S.-G.C.)
| | - Bokyeong Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (B.R.); (C.-Y.K.)
- Department of Biomedical Informatics, College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - C-Yoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (B.R.); (C.-Y.K.)
| | - Seon Young Park
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea; (S.Y.P.); (K.J.); (J.H.J.); (C.P.); (C.C.)
| | - Kyungmin Jang
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea; (S.Y.P.); (K.J.); (J.H.J.); (C.P.); (C.C.)
| | - Jae Heon Jung
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea; (S.Y.P.); (K.J.); (J.H.J.); (C.P.); (C.C.)
| | - Cheolhyoung Park
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea; (S.Y.P.); (K.J.); (J.H.J.); (C.P.); (C.C.)
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Republic of Korea; (S.Y.P.); (K.J.); (J.H.J.); (C.P.); (C.C.)
| | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
7
|
Kim MS, Kong D, Han M, Roh K, Koo H, Lee S, Kang KS. Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Vet Res Commun 2023; 47:2055-2070. [PMID: 37421548 DOI: 10.1007/s11259-023-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs. We examined gene expression of immune modulation and T lymphocytes from activated canine peripheral blood mononuclear cell (PBMC) proliferation. As a result, we confirmed that cAM-MSCs upregulated immune modulation genes (TGF-β1, IDO1 and PTGES2) and suppressed the proliferation capacity of T cells. Moreover, we confirmed the therapeutic effect of cAM-MSCs compared with oclacitinib (OCL), the most commonly used Janus kinase (JAK) inhibitor, as a treatment for canine atopic dermatitis (AD) using a mouse AD model. As a result, we confirmed that cAM-MSCs with PBS treatment groups (passage 4, 6 and 8) compared with PBS only (PBS) though scores of dermatologic signs, tissue pathologic changes and inflammatory cytokines were significantly reduced. In particular, cAM-MSCs were more effective than OCL in the recovery of wound dysfunction, regulation of mast cell activity and expression level of immune modulation protein. Interestingly, subcutaneous injection of cAM-MSCs induced weight recovery, but oral administration of oclacitinib induced weight loss as a side effect. In conclusion, this study suggests that cAM-MSCs can be developed as a safe canine treatment for atopic dermatitis without side effects through effective regeneration and immunomodulation.
Collapse
Affiliation(s)
- Min Soo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myounghee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyounghwan Roh
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Hojun Koo
- Smile Veterinary Clinic, Jungbu-daero, Cheoin-gu, yongin-si, Gyeonggi-do, 1510, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Phyo H, Aburza A, Mellanby K, Esteves CL. Characterization of canine adipose- and endometrium-derived Mesenchymal Stem/Stromal Cells and response to lipopolysaccharide. Front Vet Sci 2023; 10:1180760. [PMID: 37275605 PMCID: PMC10237321 DOI: 10.3389/fvets.2023.1180760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are used for regenerative therapy in companion animals. Their potential was initially attributed to multipotency, but subsequent studies in rodents, humans and veterinary species evidenced that MSCs produce factors that are key mediators of immune, anti-infective and angiogenic responses, which are essential in tissue repair. MSCs preparations have been classically obtained from bone marrow and adipose tissue (AT) in live animals, what requires the use of surgical procedures. In contrast, the uterus, which is naturally exposed to external insult and infection, can be accessed nonsurgically to obtain samples, or tissues can be taken after neutering. In this study, we explored the endometrium (EM) as an alternative source of MSCs, which we compared with AT obtained from canine paired samples. Canine AT- and EM-MSCs, formed CFUs when seeded at low density, underwent tri-lineage differentiation into adipocytes, osteocytes and chondrocytes, and expressed the CD markers CD73, CD90 and CD105, at equivalent levels. The immune genes IL8, CCL2 and CCL5 were equally expressed at basal levels by both cell types. However, in the presence of the inflammatory stimulus lipopolysaccharide (LPS), expression of IL8 was higher in EM- than in AT-MSCs (p < 0.04) while the other genes were equally elevated in both cell types (p < 0.03). This contrasted with the results for CD markers, where the expression was unaltered by exposing the MSCs to LPS. Overall, the results indicate that canine EM-MSCs could serve as an alternative cell source to AT-MSCs in therapeutic applications.
Collapse
|
9
|
Schneider I, Calcagni M, Buschmann J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: a review. Cytotherapy 2023; 25:105-119. [PMID: 36115756 DOI: 10.1016/j.jcyt.2022.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 08/11/2022] [Indexed: 01/18/2023]
Abstract
Adipose tissue presents a comparably easy source for obtaining stem cells, and more studies are increasingly investigating the therapeutic potential of adipose-derived stem cells. Wound healing, especially in chronic wounds, and treatment of skin diseases are some of the fields investigated. In this narrative review, the authors give an overview of some of the latest studies concerning wound healing as well as treatment of several skin diseases and concentrate on the different forms of application of adipose-derived stem cells.
Collapse
Affiliation(s)
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Najera J, Hao J. Recent advance in mesenchymal stem cells therapy for atopic dermatitis. J Cell Biochem 2023; 124:181-187. [PMID: 36576973 DOI: 10.1002/jcb.30365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells found in a variety of tissues in the body, including but not limited to bone marrow, adipose tissue, umbilical cord, and umbilical cord blood. Given their immunomodulatory effect and ability to be readily isolated from several tissues, they have great potential to be used as a therapeutic agent in a variety of immune-mediated disorders. Atopic dermatitis (AD) is a persistent and relapsing immune skin condition that has recently become more common in several species such as humans, canines, equines, and felines. The use of MSCs to treat AD has piqued the great interest of researchers in recent years. In this article, we review the recent understanding of AD pathology and advances in preclinical and clinical studies of MSCs, MSCs-derived conditional media and exosomes as therapeutic tools to treat AD.
Collapse
Affiliation(s)
- Jonathan Najera
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA.,Department of Biology, College of Science, California State University Polytechnic University, Pomona, California, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
11
|
Kim Y, Lee SH, Song Y, Jeong S, Kim HJ. Induction of autophagy improves skin and hair conditions in dogs with underlying diseases. Front Vet Sci 2023; 10:1078259. [PMID: 36777662 PMCID: PMC9909349 DOI: 10.3389/fvets.2023.1078259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Autophagy was reported to play a crucial role in maintaining general and skin health. Methods The study used a synthesized autophagy inducer (AI) (Aquatide™ cospharm Inc.; Daejeon, Korea), for evaluating the effects of autophagy on skin and hair in dogs. Twenty-two dogs with poor skin and hair which were diagnosed with canine atopic dermatitis (CAD) or pituitary-dependent hyperadrenocorticism (PDH) were included. Clinical scores using Canine Atopic Dermatitis Extent and Severity Index-04 (CADESI-04), Pruritus Visual Analog Scale (PVAS) and skin barrier function using measurement of transepidermal water loss (TEWL) were evaluated and canine keratinocytes were also used in vitro investigation of pro-inflammatory cytokines after AI treatment. Results In the AI group, clinical scores and skin barrier function were improved at week 8 significantly compared to in the other groups. In particular, the AI significantly improved the hair surface damage at 8 weeks compared to the baseline. In vitro, the AI reduced pro-inflammatory cytokines by activating the 78-kDa glucose-regulated protein (GRP78). Conclusion AI improve skin barrier function and hair damage and reduce pro-inflammatory cytokines by inhibiting reactive oxygen species (ROS) production in dogs.
Collapse
Affiliation(s)
- Yoonji Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,BK 21 Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yunji Song
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,BK 21 Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sekyoo Jeong
- Research Team, Incospharm Corp., Daejeon, Republic of Korea
| | - Ha-Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,BK 21 Project Team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,*Correspondence: Ha-Jung Kim ✉
| |
Collapse
|
12
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
13
|
Formulation of secretome derived from mesenchymal stem cells for inflammatory skin diseases. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Black L, Zacharias S, Hughes M, Bautista R, Taechangam N, Sand T. The effect of uterine-derived mesenchymal stromal cells for the treatment of canine atopic dermatitis: A pilot study. Front Vet Sci 2022; 9:1011174. [PMID: 36213399 PMCID: PMC9538998 DOI: 10.3389/fvets.2022.1011174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Canine atopic dermatitis (cAD) is a common allergic skin condition among dogs that may respond to treatment with mesenchymal stromal cells (MSCs). The aim of this pilot study was to evaluate the safety and efficacy of allogeneic uterine tissue-derived MSCs (UMSCs) for the reduction and control of clinical signs associated with cAD. At two sites, seven client-owned dogs with cAD received two doses of approximately 3.6 x 107 UMSCs given intravenously over 30 min, on Day 0 and Day 14, with monthly clinical follow-up until Day 90 and optional owner phone interview on Day 180. Primary outcomes were pruritus and skin lesions. Pruritus was measured by the owner-assessed Pruritus Visual Analog Scale (PVAS), with treatment success defined as a 2-point reduction in PVAS score at any timepoint after treatment. Skin lesions were evaluated by two veterinarians according to the Canine Atopic Dermatitis Extent and Severity Index (CADESI-4). The secondary outcome was safety, which was evaluated via physical exam and hematology, including complete blood count (CBC), serum chemistry, and urinalysis (UA). Treatment was generally well tolerated and associated with a significant reduction in PVAS on Day 30 that was maintained through Day 180. On Day 60, five dogs (71%) achieved treatment success (at least 2-point reduction in PVAS), and three dogs (43%) had a PVAS improvement of 4-5 points. Mean CADESI-4 score was significantly improved on Day 14, Day 30, Day 60, and Day 90, with the lowest mean score observed on Day 60. Three dogs exhibited mild and transient adverse events. These findings suggest that IV-administered allogeneic UMSCs reduce and control clinical signs of cAD, with a durable benefit lasting 3–6 months.
Collapse
|
15
|
Mizuno T, Inoue M, Kubo T, Iwaki Y, Kawamoto K, Itamoto K, Kambayashi S, Igase M, Baba K, Okuda M. Improvement of anemia in five dogs with nonregenerative anemia treated with allogeneic adipose-derived stem cells. Vet Anim Sci 2022; 17:100264. [PMID: 35898238 PMCID: PMC9310121 DOI: 10.1016/j.vas.2022.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 10/31/2022] Open
Abstract
Five canine cases with nonregenerative anemia were included in this study. All were treated with allogeneic adipose-derived stem cells (ADSCs). All cases showed improvement of anemia by ADSCs treatment.
Background Objectives Methods Results Conclusions
Collapse
|
16
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Kim SY, Yoon TH, Na J, Yi SJ, Jin Y, Kim M, Oh TH, Chung TW. Mesenchymal Stem Cells and Extracellular Vesicles Derived from Canine Adipose Tissue Ameliorates Inflammation, Skin Barrier Function and Pruritus by Reducing JAK/STAT Signaling in Atopic Dermatitis. Int J Mol Sci 2022; 23:ijms23094868. [PMID: 35563259 PMCID: PMC9101369 DOI: 10.3390/ijms23094868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Canine atopic dermatitis (AD) is a common chronic inflammatory skin disorder resulting from imbalance between T lymphocytes. Current canine AD treatments use immunomodulatory drugs, but some of the dogs have limitations that do not respond to standard treatment, or relapse after a period of time. Thus, the purpose of this study was to evaluate the immunomodulatory effect of mesenchymal stem cells derived from canine adipose tissue (cASCs) and cASCs-derived extracellular vesicles (cASC-EVs) on AD. First, we isolated and characterized cASCs and cASCs-EVs to use for the improvement of canine atopic dermatitis. Here, we investigated the effect of cASCs or cASC-EVs on DNCB-induced AD in mice, before using for canine AD. Interestingly, we found that cASCs and cASC-EVs improved AD-like dermatitis, and markedly decreased levels of serum IgE, (49.6%, p = 0.002 and 32.1%, p = 0.016 respectively) epidermal inflammatory cytokines and chemokines, such as IL-4 (32%, p = 0.197 and 44%, p = 0.094 respectively), IL-13 (47.4%, p = 0.163, and 50.0%, p = 0.039 respectively), IL-31 (64.3%, p = 0.030 and 76.2%, p = 0.016 respectively), RANTES (66.7%, p = 0.002 and 55.6%, p = 0.007) and TARC (64%, p = 0.016 and 86%, p = 0.010 respectively). In addition, cASCs or cASC-EVs promoted skin barrier repair by restoring transepidermal water loss, enhancing stratum corneum hydration and upregulating the expression levels of epidermal differentiation proteins. Moreover, cASCs or cASC-EVs reduced IL-31/TRPA1-mediated pruritus and activation of JAK/STAT signaling pathway. Taken together, these results suggest the potential of cASCs or cASC-EVs for the treatment of chronic inflammation and damaged skin barrier in AD or canine AD.
Collapse
Affiliation(s)
- Sung Youl Kim
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Tae Hong Yoon
- GNG CELL Co., Ltd., R&D Center, 122 Unjung-ro, Bundang-gu, Seongnam-si 13466, Korea; (S.Y.K.); (T.H.Y.)
| | - Jungtae Na
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea;
| | - Seong Joon Yi
- Department of Veterinary Anatomy, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Yunseok Jin
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Minji Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
| | - Tae-Ho Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea; (Y.J.); (M.K.)
- Correspondence: (T.-H.O.); (T.-W.C.)
| | - Tae-Wook Chung
- JIN BioCell Co., Ltd., R&D Center, #101-103, National Clinical Research Center for Korean Medicine, Pusan National University Korean Medicine Hospital, 20 Geumo-ro, Mulgeum-eup, Yangsan-si 50612, Korea
- Correspondence: (T.-H.O.); (T.-W.C.)
| |
Collapse
|
18
|
Prišlin M, Vlahović D, Kostešić P, Ljolje I, Brnić D, Turk N, Lojkić I, Kunić V, Karadjole T, Krešić N. An Outstanding Role of Adipose Tissue in Canine Stem Cell Therapy. Animals (Basel) 2022; 12:ani12091088. [PMID: 35565514 PMCID: PMC9099541 DOI: 10.3390/ani12091088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Adipose tissue, previously known as connective tissue with a role in energy storage, is currently changing the course of treatments in veterinary medicine. Recent studies have revealed one particularly impressive function among all the newly discovered functions of adipose tissue. The interactive cells hosted by adipose tissue, the stromal vascular fraction (SVF), and their role in treating numerous diseases have provided a prospective course of research with positive outcomes in regenerative veterinary medicine (RVM). This review describes the main features of adipose tissue, emphasizing an eclectic combination of cells within the SVF and its thus far researched therapeutic possibilities in canine RVM. An afterwards focus is on a highly researched component of the SVF, adipose-derived mesenchymal stem cells (ASCs), which were shown to have an extraordinary impact relying on several proposed mechanisms of action on mitigating pathologies in canines. Furthermore, ASC therapy showed the most significant results in the orthopaedics field and in neurology, dermatology, ophthalmology, gastroenterology, and hepatology, which elevates the possibilities of ASC therapy to a whole new level. Therefore, this review article aims to raise awareness of the importance of research on cellular components, within abundant and easily accessible adipose tissue, in the direction of regenerative therapy in canines, considering the positive outcomes so far. Although the focus is on the positive aspects of cellular therapy in canines, the researchers should not forget the importance of identifying the potential negative aspects within published and upcoming research. Safe and standardized treatment represents a fundamental prerequisite for positively impacting the lives of canine patients.
Collapse
Affiliation(s)
- Marina Prišlin
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Dunja Vlahović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Petar Kostešić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Dore Pfanove 11, 10000 Zagreb, Croatia;
| | - Dragan Brnić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Nenad Turk
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Ivana Lojkić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Valentina Kunić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
| | - Tugomir Karadjole
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia; (D.V.); (P.K.); (N.T.); (T.K.)
| | - Nina Krešić
- Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia; (M.P.); (D.B.); (I.L.); (V.K.)
- Correspondence:
| |
Collapse
|
19
|
Suicide gene therapy by canine mesenchymal stem cell transduced with thymidine kinase in a u-87 glioblastoma murine model: Secretory profile and antitumor activity. PLoS One 2022; 17:e0264001. [PMID: 35167620 PMCID: PMC8846542 DOI: 10.1371/journal.pone.0264001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/31/2022] [Indexed: 01/22/2023] Open
Abstract
The role played by certain domestic species such as dogs as a translational model in comparative oncology shows great interest to develop new therapeutic strategies in brain tumors. Gliomas are a therapeutic challenge that represents the most common form of malignant primary brain tumors in humans and the second most common form in dogs. Gene-directed enzyme/prodrug therapy using adipose mesenchymal stem cells (Ad-MSCs) expressing the herpes simplex virus thymidine kinase (TK) has proven to be a promising alternative in glioblastoma therapy, through its capacity to migrate and home to the tumor and delivering local cytotoxicity avoiding other systemic administration. In this study, we demonstrate the possibility for canine Ad-MSCs (cAd-MSCs) to be genetically engineered efficiently with a lentiviral vector to express TK (TK-cAd-MSCs) and in combination with ganciclovir (GCV) prodrug demonstrated its potential antitumor efficacy in vitro and in vivo in a mice model with the human glioblastoma cell line U87. TK-cAd-MSCs maintained cell proliferation, karyotype stability, and MSCs phenotype. Genetic modification significantly affects its secretory profile, both the analyzed soluble factors and exosomes. TK-cAd-MSCs showed a high secretory profile of some active antitumor immune response cytokines and a threefold increase in the amount of secreted exosomes, with changes in their protein cargo. We also found that the prodrug protein is not released directly into the culture medium by TK-cAd-MSCs. We believe that our work provides new perspectives for glioblastoma gene therapy in dogs and a better understanding of this therapy in view of its possible implantation in humans.
Collapse
|
20
|
Platelet Lysate for Mesenchymal Stromal Cell Culture in the Canine and Equine Species: Analogous but Not the Same. Animals (Basel) 2022; 12:ani12020189. [PMID: 35049811 PMCID: PMC8773277 DOI: 10.3390/ani12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Regenerative medicine using platelet-based blood products or adult stem cells offers the prospect of better clinical outcomes with many diseases. In veterinary medicine, most progress has been made with the development and therapeutic use of these regenerative therapeutics in horses, but the clinical need is given in dogs as well. Our aim was to transfer previous advances in the development of horse regenerative therapeutics, specifically the use of platelet lysate for feeding stem cell cultures, to the dog. Here, we describe the scalable production of canine platelet lysate, which could be used in regenerative biological therapies. We also evaluated the canine platelet lysate for its suitability in feeding canine stem cell cultures in comparison to equine platelet lysate used for equine stem cell cultures. Platelet lysate production from canine blood was successful, but the platelet lysate did not support stem cell culture in dogs in the same beneficial way observed with the equine platelet lysate and stem cells. In conclusion, canine platelet lysate can be produced in large scales as described here, but further research is needed to improve the cultivation of canine stem cells. Abstract Platelet lysate (PL) is an attractive platelet-based therapeutic tool and has shown promise as xeno-free replacement for fetal bovine serum (FBS) in human and equine mesenchymal stromal cell (MSC) culture. Here, we established a scalable buffy-coat-based protocol for canine PL (cPL) production (n = 12). The cPL was tested in canine adipose MSC (n = 5) culture compared to FBS. For further comparison, equine adipose MSC (n = 5) were cultured with analogous equine PL (ePL) or FBS. During canine blood processing, platelet and transforming growth factor-β1 concentrations increased (p < 0.05 and p < 0.001), while white blood cell concentrations decreased (p < 0.05). However, while equine MSC showed good results when cultured with 10% ePL, canine MSC cultured with 2.5% or 10% cPL changed their morphology and showed decreased metabolic activity (p < 0.05). Apoptosis and necrosis in canine MSC were increased with 2.5% cPL (p < 0.05). Surprisingly, passage 5 canine MSC showed less genetic aberrations after culture with 10% cPL than with FBS. Our data reveal that using analogous canine and equine biologicals does not entail the same results. The buffy-coat-based cPL was not adequate for canine MSC culture, but may still be useful for therapeutic applications.
Collapse
|
21
|
Kaur G, Ramirez A, Xie C, Clark D, Dong C, Maki C, Ramos T, Izadyar F, Najera SOL, Harb J, Hao J. A double-blinded placebo-controlled evaluation of adipose-derived mesenchymal stem cells in treatment of canine atopic dermatitis. Vet Res Commun 2021; 46:251-260. [PMID: 34713306 DOI: 10.1007/s11259-021-09853-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a new therapy for various immune-mediated inflammatory diseases. In this study we perform the first double-blinded, placebo-controlled evaluation of the efficacy of adipose-derived allogenic canine MSCs for the treatment of canine atopic dermatitis (cAD). Enrolled canine patients were randomly divided into placebo (PBS saline), low-dose (5 × 105 cells/kg), and high-dose (5 × 106 cells/kg) treatment groups. Each patient received three subcutaneous MSCs treatments or PBS saline at four-week intervals with injections at five sites. Patients were monitored by physical exams, pruritus visual analog scales (PVAS) signed by the primary caretaker, canine atopic dermatitis extent and severity index-4 (CADESI-4) scores by two veterinarians, and complete blood count and serum chemistry analysis along with laboratory analysis for potential biomarkers. Patients were kept off any immune-modulating drugs during the study period, and oral antibiotics and topicals were used for managing pruritus and secondary infections. The PVAS scores and the serum miR-483 levels were significantly lower in the high dose group compared to the placebo group at day90 post first-treatment. The CADESI-4 scores of the high dose group also showed downward trends. No severe adverse effects were observed in any patient in this study. The high dose MSC treatment is efficacious in alleviating the clinical signs of cAD until 30 days after the last subcutaneous administration of MSCs, and miRNA-483 may be a reliable prognostic biomarker for cAD. The MSCs efficacy and potential biomarkers should be further explored by a larger scale clinical trial.
Collapse
Affiliation(s)
- Gagandeep Kaur
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA.
| | - Ana Ramirez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Chen Xie
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - David Clark
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Charli Dong
- Animal Dermatology Clinic, Pasadena, CA, USA
| | | | | | | | | | - Jerry Harb
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, USA. .,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
22
|
Kim EY, Kim HS, Hong KS, Chung HM, Park SP, Noh G. Mesenchymal stem/stromal cell therapy in atopic dermatitis and chronic urticaria: immunological and clinical viewpoints. Stem Cell Res Ther 2021; 12:539. [PMID: 34635172 PMCID: PMC8503727 DOI: 10.1186/s13287-021-02583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/30/2021] [Indexed: 12/29/2022] Open
Abstract
Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.
Collapse
Affiliation(s)
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, The Graduate School of Dong-A University, Busan, Korea.,Department of Health Sciences, The Graduate School of Dong-A University, Busan, Korea
| | | | - Hyung-Min Chung
- Miraecellbio Co., Ltd., Seoul, Korea.,Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Se-Pill Park
- Miraecellbio Co., Ltd., Seoul, Korea. .,Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, 63243, Korea.
| | - Geunwoong Noh
- Department of Allergy, Allergy and Clinical Immunology Center, Cheju Halla General Hospital, Doreongno 65, Jeju-si, 63127, Jeju Special Self-Governing Province, Korea.
| |
Collapse
|
23
|
Koprivec S, Novak M, Bernik S, Voga M, Mohorič L, Majdič G. Treatment of cranial cruciate ligament injuries in dogs using a combination of tibial tuberosity advancement procedure and autologous mesenchymal stem cells/multipotent mesenchymal stromal cells - A pilot study. Acta Vet Hung 2021; 68:405-412. [PMID: 33656452 DOI: 10.1556/004.2020.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022]
Abstract
In the present pilot study, we evaluated different supplemental therapies using autologous multipotent mesenchymal stromal cells (MMSCs) for the treatment of cranial cruciate ligament defects in dogs. We used tibial tuberosity advancement (TTA) and augmented it by supportive therapy with MMSCs in three patient groups. In the first patient group, the dogs were injected with MMSCs directly into the treated stifle one month after surgery. In the second group, MMSCs were delivered in a silk fibroin scaffold which was placed in the osteotomy gap during surgery. In the third group, MMSCs were first mixed with bone tissue and blood from the patient and delivered into the osteotomy gap during surgery. In the control group, patients underwent the TTA procedure but did not receive MMSC treatment. In the group of patients who received cells in the silk fibroin scaffold during surgery, the osteotomy gap did not heal, presumably due to the low absorption of silk fibroin. Patients who received MMSCs mixed with bone tissue and blood during surgery into the osteotomy gap recovered clinically faster and had better healing of the osteotomy gap than dogs from the other two treated groups and from the control group, as assessed by clinical examination and quantification of radiographs. In conclusion, dogs that received stem cells directly into the osteotomy gap (Group 3) recovered faster compared to dogs from Groups 1 (MMSCs injected into the joint one month after surgery), 2 (cells implanted into the osteotomy gap in a silk fibroin scaffold), and the control group that did not receive additional MMSCs treatment.
Collapse
Affiliation(s)
| | | | | | - Metka Voga
- 2Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Luka Mohorič
- 3Animacel Biotechnology Ltd., Ljubljana, Slovenia
| | - Gregor Majdič
- 2Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Luo H, Li D, Chen Z, Wang B, Chen S. Manufacturing and banking canine adipose-derived mesenchymal stem cells for veterinary clinical application. BMC Vet Res 2021; 17:96. [PMID: 33648493 PMCID: PMC7919991 DOI: 10.1186/s12917-021-02791-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have generated a great amount of interest in recent years as a novel therapeutic application for improving the quality of pet life and helping them free from painful conditions and diseases. It has now become critical to address the challenges related to the safety and efficacy of MSCs expanded in vitro. In this study, we establish a standardized process for manufacture of canine adipose-derived MSCs (AD-MSCs), including tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications. RESULTS After expansion, the viability of AD-MSCs manufactured under our standardized process was above 90 %. Expression of surface markers and differentiation potential was consistent with ISCT standards. Sterility, mycoplasma, and endotoxin tests were consistently negative. AD-MSCs presented normal karyotype, and did not form in vivo tumors. No adverse events were noted in the case treated with intravenously AD-MSCs. CONCLUSIONS Herein we demonstrated the establishment of a feasible bioprocess for manufacturing and banking canine AD-MSCs for veterinary clinical use.
Collapse
Affiliation(s)
- Huina Luo
- School of Life Science and Engineering, Foshan University, 528231, Foshan, Guangdong, China
| | - Dongsheng Li
- VetCell Biotechnology Company Limited, 528231, Foshan, Guangdong, China
| | - Zhisheng Chen
- School of Life Science and Engineering, Foshan University, 528231, Foshan, Guangdong, China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, 528231, Foshan, Guangdong, China.
| | - Shengfeng Chen
- School of Life Science and Engineering, Foshan University, 528231, Foshan, Guangdong, China.
| |
Collapse
|
25
|
Voga M, Kovač V, Majdic G. Comparison of Canine and Feline Adipose-Derived Mesenchymal Stem Cells/Medicinal Signaling Cells With Regard to Cell Surface Marker Expression, Viability, Proliferation, and Differentiation Potential. Front Vet Sci 2021; 7:610240. [PMID: 33521084 PMCID: PMC7838367 DOI: 10.3389/fvets.2020.610240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Remarkable immunomodulatory abilities of mesenchymal stem cells, also called multipotent mesenchymal stromal cells or medicinal signaling cells (MSCs), have entailed significant advances in veterinary regenerative medicine in recent years. Despite positive outcomes from MSC therapies in various diseases in dogs and cats, differences in MSC characteristics between small animal veterinary patients are not well-known. We performed a comparative study of cells' surface marker expression, viability, proliferation, and differentiation capacity of adipose-derived MSCs (ADMSCs) from dogs and domestic cats. The same growth media and methods were used to isolate, characterize, and culture canine and feline ADMSCs. Adipose tissue was collected from 11 dogs and 8 cats of both sexes. The expression of surface markers CD44, CD90, and CD34 was detected by flow cytometry. Viability at passage 3 was measured with the hemocytometer and compared to the viability measured by flow cytometry after 1 day of handling. The proliferation potential of MSCs was measured by calculating cell doubling and cell doubling time from second to eighth passage. Differentiation potential was determined at early and late passages by inducing cells toward adipogenic, osteogenic, and chondrogenic differentiation using commercial media. Our study shows that the percentage of CD44+CD90+ and CD34−/− cells is higher in cells from dogs than in cells from cats. The viability of cells measured by two different methods at passage 3 differed between the species, and finally, canine ADMSCs possess greater proliferation and differentiation potential in comparison to the feline ADMSCs.
Collapse
Affiliation(s)
- Metka Voga
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Valerija Kovač
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Gregor Majdic
- Veterinary Faculty, Institute for Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.,Medical Faculty, Institute for Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
26
|
REIS BPZCD, ORGE ID, SAMPAIO GLDA, DALTRO SRT, SANTOS RRD, MEIRA CS, SOARES MBP. Mesenchymal Stem cells in the context of canine atopic dermatitis: A Review. REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2021. [DOI: 10.1590/s1519-99402122242021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Canine atopic dermatitis (CAD) is a chronic inflammatory skin disease and has a high frequency among dermatological diseases. The interaction of genetic factors, skin and environmental conditions affect the expression of the disease, developing a complex pathology. Current multimodal treatment has numerous adverse effects and variations in its efficacy and safety, demonstrating the need to develop safe and effective therapeutic resources for patients with CAD. Mesenchymal stem cells (MSCs) are multipotent cells, with special characteristics, such as self-renewal, immunomodulatory properties, and de-differentiation, making them useful for several clinical problems. The discovery of the immunosuppressive effect of MSCs on T cells has opened the potential for new perspectives with its use as a therapeutic agent for immune diseases, such as CAD. The scarce number of research using the MSC as a treatment for CAD result in the lack of knowledge about the benefits and possible protocols to be followed for the use of this cell therapy. In this review, we highlighted the clinical studies and potential biological mechanisms of MSC-based cell therapy effects attenuating canine atopic dermatitis compared to conventional treatment, which might lead to a safe improvement of the animal’s clinical condition in a short period without causing adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Cássio Santana MEIRA
- Oswaldo Cruz Foundation (FIOCRUZ), Brazil; University Center SENAI/CIMATEC, Brazil
| | | |
Collapse
|
27
|
Villatoro AJ, Martín-Astorga MDC, Alcoholado C, Becerra J. Canine colostrum exosomes: characterization and influence on the canine mesenchymal stem cell secretory profile and fibroblast anti-oxidative capacity. BMC Vet Res 2020; 16:417. [PMID: 33138803 PMCID: PMC7607682 DOI: 10.1186/s12917-020-02623-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Canine colostrum milk (CCM) is a specific secretion of the mammary gland that is fundamental for the survival of the newborn. CCM has many described components (immunoglobulins, proteins or fat), but its small vesicles, named exosomes, are largely unknown. Results A characterization of CCM exosomes was performed. Exosomes were abundant in CCM and appeared with the characteristic cup-shaped morphology and well-defined round vesicles. The size distribution of exosomes was between 37 and 140 nm, and western blot analysis showed positive expression of specific exosomal markers. Proteomic analysis revealed a total of 826 proteins in exosome cargo. We also found that exosomes modified the proliferation and secretory profiles in canine mesenchymal stem cells derived from bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). Additionally, CCM exosomes demonstrated a potent antioxidant effect on canine fibroblasts in culture. Conclusions Our findings highlight, for the first time, the abundant presence of exosomes in CCM and their ability to interact with mesenchymal stem cells (MSCs). The addition of exosomes to two types of MSCs in culture resulted in specific secretory profiles with functions related to angiogenesis, migration and chemotaxis of immune cells. In particular, the cAd-MSCs secretory profile showed higher potential in adipose tissue development and neurogenesis, while cBM-MSC production was associated with immunity, cell mobilization and haematopoiesis. Finally, exosomes also presented antioxidant capacity on fibroblasts against reactive oxygen species activity within the cell, demonstrating their fundamental role in the development and maturation of dogs in the early stages of their life. Supplementary information Supplementary information accompanies this paper at 10.1186/s12917-020-02623-w.
Collapse
Affiliation(s)
- Antonio J Villatoro
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain.,Instituto de Immunología Clínica y Terapia Celular (IMMUNESTEM), Miraflores del Palo, 14, 29018, Málaga, Spain
| | - María Del Carmen Martín-Astorga
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, 29071, Málaga, Spain. .,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain. .,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Severo Ochoa 35, 29590, Málaga, Spain.
| |
Collapse
|
28
|
de Oliveira Ramos F, Malard PF, Brunel HDSS, Paludo GR, de Castro MB, da Silva PHS, da Cunha Barreto-Vianna AR. Canine atopic dermatitis attenuated by mesenchymal stem cells. J Adv Vet Anim Res 2020; 7:554-565. [PMID: 33005683 PMCID: PMC7521806 DOI: 10.5455/javar.2020.g453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
Objective: To evaluate the use of mesenchymal stem cells (MSCs) in the attenuation of canine atopic dermatitis (AD). Materials and methods: Sixteen dogs were selected and divided into three groups, mild, moderate, and severe, according to the Canine Atopic Dermatitis Extent and Severity Index (CADESI-4). They were evaluated for 82 days. The protocol recommended in this experiment was to inject 2 × 106/kg bodyweight of MSC’s in all groups by the intravenous route with intervals of applications of 21 days. The degree of pruritus was evaluated by examining the visual analog scale, the CADESI-4, the histopathology of the skin, hematological and biochemical parameters, the pyogenic effect of MSCs, and the thickness of the epidermis. Results: There was a significant difference in the reduction of epidermal thickness in the moderate and severe groups. Hematological, biochemical, and body temperature parameters remained within normal limits for the species with no side effects Conclusion: MSCs attenuated the clinical signs of AD.
Collapse
Affiliation(s)
| | | | | | - Giane Regina Paludo
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | |
Collapse
|
29
|
Abstract
The lack of clear regulations for the use of veterinary stem cells has triggered the commercialization of unproven experimental therapies for companion animal diseases. Adult stem cells have complex biological characteristics that are directly related to the therapeutic application, but several questions remain to be answered. In order to regulate the use of these cells, well-conducted, controlled scientific studies that generate high-quality data should be performed, in order to assess the efficacy and safety of the intended treatment. This paper discusses the scientific challenges of mesenchymal stem cell therapy in veterinary regenerative medicine, and reviews published trials of adipose-tissue-derived stem cells in companion animal diseases that spontaneously occur.
Collapse
|
30
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
31
|
Daltro SRT, Meira CS, Santos IP, Ribeiro dos Santos R, Soares MBP. Mesenchymal Stem Cells and Atopic Dermatitis: A Review. Front Cell Dev Biol 2020; 8:326. [PMID: 32478072 PMCID: PMC7240073 DOI: 10.3389/fcell.2020.00326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are stromal-derived non-hematopoietic progenitor cells that reside in and can be expanded from various tissues sources of adult and neonatal origin, such as the bone marrow, umbilical cord, umbilical cord blood, adipose tissue, amniotic fluid, placenta, dental pulp and skin. The discovery of the immunosuppressing action of MSCs on T cells has opened new perspectives for their use as a therapeutic agent for immune-mediated disorders, including allergies. Atopic dermatitis (AD), a chronic and relapsing skin disorder that affects up to 20% of children and up to 3% of adults worldwide, is characterized by pruritic eczematous lesions, impaired cutaneous barrier function, Th2 type immune hyperactivation and, frequently, elevation of serum immunoglobulin E levels. Although, in the dermatology field, the application of MSCs as a therapeutic agent was initiated using the concept of cell replacement for skin defects and wound healing, accumulating evidence have shown that MSC-mediated immunomodulation can be applicable to the treatment of inflammatory/allergic skin disorders. Here we reviewed the pre-clinical and clinical studies and possible biological mechanisms of MSCs as a therapeutic tool for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
| | | | | | - Ricardo Ribeiro dos Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Health Institute of Technology, National Industrial Learning Service - Integrated Manufacturing and Technology Campus (SENAI-CIMATEC), Salvador, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Enciso N, Avedillo L, Fermín ML, Fragío C, Tejero C. Regenerative potential of allogeneic adipose tissue-derived mesenchymal cells in canine cutaneous wounds. Acta Vet Scand 2020; 62:13. [PMID: 32164768 PMCID: PMC7066838 DOI: 10.1186/s13028-020-0511-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have generated a great amount of interest over the past decade as a novel therapeutic treatment for a variety of diseases. Emerging studies have indicated that MSCs could enhance the repair of injured skin in canine cutaneous wounds. CASE PRESENTATION A healthy 2 years old Bodeguero Andaluz dog was presented with multiple skin bite wounds. Antibiotic and anti-inflammatory therapy was administered for 8 days. On day three, 107 allogeneic adipose-derived mesenchymal stem cells (ASCs) were intradermally injected approximately equidistant to the ASCs treated wounds. Control wounds underwent conventional treatment with a topical antibacterial ointment until wound healing and closure. Wounds, skin morphology and healing progress were monitored via serial photographs and histopathology of biopsies obtained at day seven after ASC treatment. Histopathology revealed absence of inflammatory infiltrates and presence of multiple hair follicles in contrast to the non-ASCs treated control wounds indicating that ASC treatment promoted epidermal and dermal regeneration. ASCs were identified by flow cytometry and RT-PCR. The immunomodulatory role of ASCs was evidenced by coculturing peripheral blood mononuclear cells with allogeneic ASCs. Phytohemagglutinin was administered to stimulate lymphocyte proliferation. Cells were harvested and stained with an anticanine CD3-FITC antibody. The ASCs inhibited proliferation of T lymphocytes, which was quantified by reduction of carboxyfluorescein succinimidyl ester intensity using flow cytometry. CONCLUSIONS Compared with conventional treatment, wounds treated with ASCs showed a higher regenerative capacity with earlier and faster closure in this dog.
Collapse
|
33
|
Enciso N, Amiel J, Pando J, Enciso J. Multidose intramuscular allogeneic adipose stem cells decrease the severity of canine atopic dermatitis: A pilot study. Vet World 2019; 12:1747-1754. [PMID: 32025111 PMCID: PMC6925044 DOI: 10.14202/vetworld.2019.1747-1754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Aim The aim of this pilot study was to evaluate the therapeutic and safety performance of an intramuscular treatment protocol of multidose of allogeneic adipose stem cells (ASCs) isolated, characterized, and expanded ex vivo from a healthy canine donor. Materials and Methods Twelve dogs diagnosed with canine atopic dermatitis (CAD) were intramuscularly treated with 0.5×106 of cryopreserved ASCs from a healthy immunized young canine Ehrlichia canis free donor weekly for 6 weeks. Treatment efficacy was evaluated by the pruritus index and the CAD Lesion Index (CADLI) test. Safety and adverse effects were determined by injection site reaction, weight, blood chemistry, liver function, and whole blood count. Results Canine ASCs obtained from a donor met the minimum qualities required for this type of cells and showed viability of 90% after thawing. The efficacy of the CADLI score and the pruritus index in 12 dogs with atopic dermatitis was statistically significant efficacy. No adverse reactions were observed at the intramuscular application site, or in relation to animal weight, blood cell populations, or liver and renal function. Conclusion These results suggest that intramuscular administration of cryopreserved ASCs to dogs with atopic dermatitis is a promising cellular therapeutic product for the relief of the symptoms of this disease; however, the duration of the effects obtained with this dose and with other doses should be evaluated, as well as possible immune reactions. As far as we know, this is the first report of the use of multiple intramuscular doses cryopreserved ASCs to treat atopic dermatitis.
Collapse
Affiliation(s)
- Nathaly Enciso
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Perú.,Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - José Amiel
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Perú
| | - John Pando
- Department of Cytometry, Institute of Cell Therapy. CRIOCORD. Lima. Peru
| | - Javier Enciso
- Laboratorio de Cultivo Celular e Inmunología, Universidad Científica del Sur, Lima, Perú
| |
Collapse
|
34
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Comparative analysis and characterization of soluble factors and exosomes from cultured adipose tissue and bone marrow mesenchymal stem cells in canine species. Vet Immunol Immunopathol 2018; 208:6-15. [PMID: 30712794 DOI: 10.1016/j.vetimm.2018.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
Abstract
The two main sources of mesenchymal stem cell (MSCs) in the canine species are bone marrow (cBM-MSCs) and adipose tissue (cAd-MSCs). The secretion of multitude bioactive molecules, included under the concept of secretome and found in the cultured medium, play a predominant role in the mechanism of action of these cells on tissue regeneration. Although certain features of its characterization are well documented, their secretory profiles remain unknown. We described and compared, for the first time, the secretory profile and exosomes characterization in standard monolayer culture of MSCs from both sources of the same donor as well as its immunomodulatory potential. We found that despite the similarity in surface immunophenotyping and trilineage differentiation, there are several differences in terms of proliferation rate and secretory profile. cAd-MSCs have advantages in proliferative capacity, whereas cBM-MSCs showed a significantly higher secretory production of some soluble factors (IL-10, IL-2, IL-6, IL-8, IL-12p40, IFN-γ, VEGF-A, NGF-β, TGF-β, NO and PGE2) and exosomes under the same standard culture conditions. Proteomics analysis confirm that cBM-MSCs exosomes have a greater number of characterized proteins involved in metabolic processes and in the regulation of biological processes compared to cAd-MSCs. On the other hand, secretome from both sources demonstrate similar immunomodulatory capacity when tested in mitogen stimulated lymphocyte reaction, but not in their exosomes at the dose used. Considering that the use of secretome open as a new therapeutic strategy for different diseases, without the need to implant cells, those biological differences should be considered, when choosing the MSCs source, for either cellular implantation or direct use of secretome for a specific clinical application.
Collapse
|
36
|
Klinger C. Mesenchymal stem cells: a potential therapy for canine atopic dermatitis? Vet Rec 2018; 183:651-653. [PMID: 30504161 DOI: 10.1136/vr.k4985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Christoph Klinger
- DVM, Residency ACVD / ECVD completed, Tierklinik Stuttgart Plieningen, Hermann-Fein-Strasse 15, 70599 Stuttgart, Germany
| |
Collapse
|