1
|
Nair RR, Nakazawa Y, Peterson AT. An evaluation of the ecological niche of Orf virus (Poxviridae): Challenges of distinguishing broad niches from no niches. PLoS One 2024; 19:e0293312. [PMID: 38236902 PMCID: PMC10796068 DOI: 10.1371/journal.pone.0293312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/09/2023] [Indexed: 01/22/2024] Open
Abstract
Contagious ecthyma is a skin disease, caused by Orf virus, creating great economic threats to livestock farming worldwide. Zoonotic potential of this disease has gained recent attention owing to the re-emergence of disease in several parts of the world. Increased public health concern emphasizes the need for a predictive understanding of the geographic distributional potential of Orf virus. Here, we mapped the current distribution using occurrence records, and estimated the ecological niche in both geographical and environmental spaces. Twenty modeling experiments, resulting from two- and three-partition models, were performed to choose the candidate models that best represent the geographic distributional potential of Orf virus. For all of our models, it was possible to reject the null hypothesis of predictive performance no better than random expectations. However, statistical significance must be accompanied by sufficiently good predictive performance if a model is to be useful. In our case, omission of known distribution of the virus was noticed in all Maxent models, indicating inferior quality of our models. This conclusion was further confirmed by the independent final evaluation, using occurrence records sourced from the Centre for Agriculture and Bioscience International. Minimum volume ellipsoid (MVE) models indicated the broad range of environmental conditions under which Orf virus infections are found. The excluded climatic conditions from MVEs could not be considered as unsuitable owing to the broad distribution of Orf virus. These results suggest two possibilities: that the niche models fail to identify niche limits that constrain the virus, or that the virus has no detectable niche, as it can be found throughout the geographic distributions of its hosts. This potential limitation of component-based pathogen-only ENMs is discussed in detail.
Collapse
Affiliation(s)
- Rahul Raveendran Nair
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Yoshinori Nakazawa
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
2
|
Hu W, Shimoda H, Tsuchiya Y, Kishi M, Hayasaka D. pH-dependent virucidal effects of weak acids against pathogenic viruses. Trop Med Health 2024; 52:9. [PMID: 38212868 PMCID: PMC10785384 DOI: 10.1186/s41182-023-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Weak acids, such as acetic acid, show virucidal effects against viruses, and disinfectants are considered effective virucidal agents possibly because of their low pH, depending on the proton concentration. This study aimed to evaluate the efficacy of different weak acids (acetic, oxalic, and citric acids) and eligible vinegars under different pH conditions by comparing their inactivation efficacies against enveloped and non-enveloped viruses. METHODS Acetic, oxalic, and citric acids were adjusted to pH values of 2, 4 and 6, respectively. They were also diluted from 1 M to 0.001 M with distilled water. Enveloped influenza A virus (FulV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and non-enveloped feline calicivirus (FCV) were treated with adjusted weak acids for up to 30 min. These viruses were also reacted with white distilled vinegar (WDV) and grain-flavored distilled vinegar (GV) for up to 30 min. Infectious viral titers after the reactions were expressed as plaque-forming units per mL. RESULTS Acetic acid showed virucidal effects against FulV at pH 4, whereas citric and oxalic acids did not. Acetic and citric acids inactivated SARS-CoV-2 at pH 2, whereas oxalic acid did not. All acids showed virucidal effects against FVC at pH 2; however, not at pH 4. The virucidal effects of the serially diluted weak acids were also reflected in the pH-dependent results. WDV and GV significantly reduced FulV titers after 1 min. SARS-CoV-2 was also susceptible to the virucidal effects of WDV and GV; however, the incubation period was extended to 30 min. In contrast, WDV and GV did not significantly inactivate FCV. CONCLUSIONS The inactivation efficacy of weak acids is different even under the same pH conditions, suggesting that the virucidal effect of weak acids is not simply determined by pH, but that additional factors may also influence these effects. Moreover, eligible vinegars, the main component of which is acetic acid, may be potential sanitizers for some enveloped viruses, such as FulV, in the domestic environment.
Collapse
Affiliation(s)
- Weiyin Hu
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yoshihiro Tsuchiya
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi, Aichi, 475-8585, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi, Aichi, 475-8585, Japan
| | - Daisuke Hayasaka
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
3
|
Juszkiewicz M, Walczak M, Woźniakowski G, Podgórska K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses 2023; 15:2275. [PMID: 38005951 PMCID: PMC10674562 DOI: 10.3390/v15112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever is a contagious disease, affecting pigs and wild boars, which poses a major threat to the pig industry worldwide and, therefore, to the agricultural economies of many countries. Despite intensive studies, an effective vaccine against the disease has not yet been developed. Since 2007, ASFV has been circulating in Eastern and Central Europe, covering an increasingly large area. As of 2018, the disease is additionally spreading at an unprecedented scale in Southeast Asia, nearly ruining China's pig-producing sector and generating economic losses of approximately USD 111.2 billion in 2019. ASFV's high resistance to environmental conditions, together with the lack of an approved vaccine, plays a key role in the spread of the disease. Therefore, the biosecurity and disinfection of pig farms are the only effective tools through which to prevent ASFV from entering the farms. The selection of a disinfectant, with research-proven efficacy and proper use, taking into account environmental conditions, exposure time, pH range, and temperature, plays a crucial role in the disinfection process. Despite the significant importance of ASF epizootics, little information is available on the effectiveness of different disinfectants against ASFV. In this review, we have compiled the current knowledge on the transmission, spread, and control of ASF using the principles of biosecurity, with particular attention to disinfection, including a perspective based on Polish experience with ASF control.
Collapse
Affiliation(s)
- Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| | - Grzegorz Woźniakowski
- Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| |
Collapse
|
4
|
Zheng W, Xi J, Zi Y, Wang J, Chi Y, Chen M, Zou Q, Tang C, Zhou X. Stability of African swine fever virus genome under different environmental conditions. Vet World 2023; 16:2374-2381. [PMID: 38152254 PMCID: PMC10750735 DOI: 10.14202/vetworld.2023.2374-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim African swine fever (ASF), a globally transmitted viral disease caused by ASF virus (ASFV), can severely damage the global trade economy. Laboratory diagnostic methods, including pathogen and serological detection techniques, are currently used to monitor and control ASF. Because the large double-stranded DNA genome of the mature virus particle is wrapped in a membrane, the stability of ASFV and its genome is maintained in most natural environments. This study aimed to investigate the stability of ASFV under different environmental conditions from both genomic and antibody perspectives, and to provide a theoretical basis for the prevention and elimination of ASFV. Materials and Methods In this study, we used quantitative real-time polymerase chain reaction for pathogen assays and enzyme-linked immunosorbent assay for serological assays to examine the stability of the ASFV genome and antibody, respectively, under different environmental conditions. Results The stability of the ASFV genome and antibody under high-temperature conditions depended on the treatment time. In the pH test, the ASFV genome and antibody remained stable in both acidic and alkaline environments. Disinfection tests revealed that the ASFV genome and antibody were susceptible to standard disinfection methods. Conclusion Collectively, the results demonstrated that the ASFV genome is highly stable in favorable environments but are also susceptible to standard disinfection methods. This study focuses on the stability of the ASFV genome under different conditions and provides various standard disinfection methods for the prevention and control of ASF.
Collapse
Affiliation(s)
- Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| |
Collapse
|
5
|
Ni Z, Chen L, Yun T, Xie R, Ye W, Hua J, Zhu Y, Zhang C. Inactivation Performance of Pseudorabies Virus as African Swine Fever Virus Surrogate by Four Commercialized Disinfectants. Vaccines (Basel) 2023; 11:vaccines11030579. [PMID: 36992163 DOI: 10.3390/vaccines11030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study was based on similar physicochemical characteristics of pseudorabies virus (PRV) and African swine fever virus (ASFV). A cellular model for evaluation of disinfectants was established with PRV as an alternative marker strain. In the present study, we evaluated the disinfection performance of commonly used commercialized disinfectants on PRV to provide a reference for the selection of good ASFV disinfectants. In addition, the disinfection (anti-virus) performances for four disinfectants were investigated based on the minimum effective concentration, onset time, action time, and operating temperature. Our results demonstrated that glutaraldehyde decamethylammonium bromide solution, peracetic acid solution, sodium dichloroisocyanurate, and povidone-iodine solution effectively inactivated PRV at concentrations 0.1, 0.5, 0.5, and 2.5 g/L on different time points 30, 5, 10, and 10 min, respectively. Specifically, peracetic acid exhibits optimized overall performance. Glutaraldehyde decamethylammonium bromide is cost effective but requires a long action time and the disinfectant activity is severely affected by low temperatures. Furthermore, povidone-iodine rapidly inactivates the virus and is not affected by environmental temperature, but its application is limited by a poor dilution ratio such as for local disinfection of the skin. This study provides a reference for the selection of disinfectants for ASFV.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control, Hangzhou 310018, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
7
|
Shurson GC, Urriola PE, van de Ligt JLG. Can we effectively manage parasites, prions, and pathogens in the global feed industry to achieve One Health? Transbound Emerg Dis 2021; 69:4-30. [PMID: 34171167 DOI: 10.1111/tbed.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Prions and certain endoparasites, bacteria, and viruses are internationally recognized as types of disease-causing biological agents that can be transmitted from contaminated feed to animals. Historically, foodborne biological hazards such as prions (transmissible spongiform encephalopathy), endoparasites (Trichinella spiralis, Toxoplasma gondii), and pathogenic bacteria (Salmonella spp., Listeria monocytogenes, Escherichia coli O157, Clostridium spp., and Campylobacter spp.) were major food safety concerns from feeding uncooked or improperly heated animal-derived food waste and by-products. However, implementation of validated thermal processing conditions along with verifiable quality control procedures has been effective in enabling safe use of these feed materials in animal diets. More recently, the occurrence of global Porcine Epidemic Diarrhea Virus and African Swine Fever Virus epidemics, dependence on international feed ingredient supply chains, and the discovery that these viruses can survive in some feed ingredient matrices under environmental conditions of trans-oceanic shipments has created an urgent need to develop and implement rigorous biosecurity protocols that prevent and control animal viruses in feed ingredients. Implementation of verifiable risk-based preventive controls, traceability systems from origin to destination, and effective mitigation procedures is essential to minimize these food security, safety, and sustainability threats. Creating a new biosafety and biosecurity framework will enable convergence of the diverging One Health components involving low environmental impact and functional feed ingredients that are perceived as having elevated biosafety risks when used in animal feeds.
Collapse
Affiliation(s)
- Gerald C Shurson
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Pedro E Urriola
- Department of Animal Science, College of Food Agricultural and Natural Resource Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Jennifer L G van de Ligt
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Effectiveness of Chemical Compounds Used against African Swine Fever Virus in Commercial Available Disinfectants. Pathogens 2020; 9:pathogens9110878. [PMID: 33114391 PMCID: PMC7693804 DOI: 10.3390/pathogens9110878] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022] Open
Abstract
African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)’s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.
Collapse
|
9
|
De Lorenzi G, Borella L, Alborali GL, Prodanov-Radulović J, Štukelj M, Bellini S. African swine fever: A review of cleaning and disinfection procedures in commercial pig holdings. Res Vet Sci 2020; 132:262-267. [PMID: 32693250 DOI: 10.1016/j.rvsc.2020.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022]
Abstract
African swine fever (ASF) is one of the most important diseases in pigs. Since there are no effective vaccines against the virus, farm biosecurity and good farming practices are the only effective tools to prevent the spread of the ASF virus (ASFV) in pig holdings. Hence, an important component of farm biosecurity is the Cleaning and Disinfection (C&D) procedure. Precise indications regarding the ideal disinfectant against ASFV are lacking, but every country has approved and/or authorized a list of biocides effective against ASFV. Lipidic solvents, which destroy the envelope of the virus and commercial disinfectants based on iodine and phenolic compounds are effective in inactivating the ASFV. This review describes the C&D protocol to apply in pig holdings with particular reference to ASFV.
Collapse
Affiliation(s)
- G De Lorenzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - L Borella
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - G L Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| | - J Prodanov-Radulović
- Scientific Veterinary Institute Novi Sad, Rumenacki put 20, 21000 Novi Sad, Serbia.
| | - M Štukelj
- University of Ljubljana, Veterinary Faculty, Gerbiceva ulica 60, 1000 Ljubljana, Slovenia.
| | - S Bellini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via A. Bianchi 7/9, 25124 Brescia, Italy.
| |
Collapse
|
10
|
Characteristics of Selected Active Substances used in Disinfectants and their Virucidal Activity Against ASFV. J Vet Res 2019; 63:17-25. [PMID: 30989131 PMCID: PMC6458555 DOI: 10.2478/jvetres-2019-0006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is currently one of the most important and serious diseases of pigs, mainly due to the enormous sanitary and socio-economic consequences. It leads to serious economic losses, not only because of the near 100% mortality rate, but also through the prohibitions of pork exports it triggers. Currently neither vaccines nor safe and effective chemotherapeutic agents are available against ASFV. The disease is controlled by culling infected pigs and maintaining high biosecurity standards, which principally relies on disinfection. Some countries have approved and/or authorised a list of biocides effective against this virus. This article is focused on the characteristics of chemical substances present in the most popular disinfectants of potential use against ASFV. Despite some of them being approved and tested, it seems necessary to perform tests directly on ASFV to ensure maximum effectiveness of the disinfectants in preventing the spread of ASF in the future.
Collapse
|
11
|
Okeke MI, Okoli AS, Diaz D, Offor C, Oludotun TG, Tryland M, Bøhn T, Moens U. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps? Viruses 2017; 9:v9110318. [PMID: 29109380 PMCID: PMC5707525 DOI: 10.3390/v9110318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/21/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Modified vaccinia virus Ankara (MVA) is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.
Collapse
Affiliation(s)
- Malachy I Okeke
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Arinze S Okoli
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Diana Diaz
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| | - Collins Offor
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Taiwo G Oludotun
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Piaristengasse 1, A-3500 Krems, Austria.
| | - Morten Tryland
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
- Artic Infection Biology, Department of Artic and Marine Biology, UIT-The Artic University of Norway, N-9037 Tromso, Norway.
| | - Thomas Bøhn
- Genome Editing Research Group, GenØk-Center for Biosafety, Siva Innovation Center, N-9294 Tromso, Norway.
| | - Ugo Moens
- Molecular Inflammation Research Group, Institute of Medical Biology, University i Tromsø (UiT)-The Arctic University of Norway, N-9037 Tromso, Norway.
| |
Collapse
|
12
|
Hampton AL, Dyson MC, Bergin IL. Pathology in practice. 3-week-old female Suffolk lamb with a large perianal mass. J Am Vet Med Assoc 2012; 240:1293-5. [PMID: 22607594 DOI: 10.2460/javma.240.11.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Anna L Hampton
- Unit for Laboratory Animal Medicine, Medical School, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
13
|
Tack DM, Reynolds MG. Zoonotic Poxviruses Associated with Companion Animals. Animals (Basel) 2011; 1:377-95. [PMID: 26486622 PMCID: PMC4513476 DOI: 10.3390/ani1040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals.
Collapse
Affiliation(s)
- Danielle M Tack
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Mary G Reynolds
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|