1
|
Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng 2023; 14:20417314231172573. [PMID: 37251734 PMCID: PMC10214107 DOI: 10.1177/20417314231172573] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
In 1892, J.L. Wolff proposed that bone could respond to mechanical and biophysical stimuli as a dynamic organ. This theory presents a unique opportunity for investigations on bone and its potential to aid in tissue repair. Routine activities such as exercise or machinery application can exert mechanical loads on bone. Previous research has demonstrated that mechanical loading can affect the differentiation and development of mesenchymal tissue. However, the extent to which mechanical stimulation can help repair or generate bone tissue and the related mechanisms remain unclear. Four key cell types in bone tissue, including osteoblasts, osteoclasts, bone lining cells, and osteocytes, play critical roles in responding to mechanical stimuli, while other cell lineages such as myocytes, platelets, fibroblasts, endothelial cells, and chondrocytes also exhibit mechanosensitivity. Mechanical loading can regulate the biological functions of bone tissue through the mechanosensor of bone cells intraosseously, making it a potential target for fracture healing and bone regeneration. This review aims to clarify these issues and explain bone remodeling, structure dynamics, and mechano-transduction processes in response to mechanical loading. Loading of different magnitudes, frequencies, and types, such as dynamic versus static loads, are analyzed to determine the effects of mechanical stimulation on bone tissue structure and cellular function. Finally, the importance of vascularization in nutrient supply for bone healing and regeneration was further discussed.
Collapse
Affiliation(s)
- Qianli Ma
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
- Department of Immunology, School of
Basic Medicine, Fourth Military Medical University, Xi’an, PR China
| | - Zahra Miri
- Department of Materials Engineering,
Isfahan University of Technology, Isfahan, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute
of Clinical Dentistry, University of Oslo, Norway
| | - Amirhossein Moghanian
- Department of Materials Engineering,
Imam Khomeini International University, Qazvin, Iran
| | - Dagnjia Loca
- Rudolfs Cimdins Riga Biomaterials
Innovations and Development Centre, Institute of General Chemical Engineering,
Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga,
Latvia
- Baltic Biomaterials Centre of
Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
2
|
Uda Y, Saini V, Petty CA, Alshehri M, Shi C, Spatz JM, Santos R, Newell CM, Huang TY, Kochen A, Kim JW, Constantinou CK, Saito H, Held KD, Hesse E, Pajevic PD. Parathyroid hormone signaling in mature osteoblasts/osteocytes protects mice from age-related bone loss. Aging (Albany NY) 2021; 13:25607-25642. [PMID: 34968192 PMCID: PMC8751595 DOI: 10.18632/aging.203808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023]
Abstract
Aging is accompanied by osteopenia, characterized by reduced bone formation and increased bone resorption. Osteocytes, the terminally differentiated osteoblasts, are regulators of bone homeostasis, and parathyroid hormone (PTH) receptor (PPR) signaling in mature osteoblasts/osteocytes is essential for PTH-driven anabolic and catabolic skeletal responses. However, the role of PPR signaling in those cells during aging has not been investigated. The aim of this study was to analyze the role of PTH signaling in mature osteoblasts/osteocytes during aging. Mice lacking PPR in osteocyte (Dmp1-PPRKO) display an age-dependent osteopenia characterized by a significant decrease in osteoblast activity and increase in osteoclast number and activity. At the molecular level, the absence of PPR signaling in mature osteoblasts/osteocytes is associated with an increase in serum sclerostin and a significant increase in osteocytes expressing 4-hydroxy-2-nonenals, a marker of oxidative stress. In Dmp1-PPRKO mice there was an age-dependent increase in p16Ink4a/Cdkn2a expression, whereas it was unchanged in controls. In vitro studies demonstrated that PTH protects osteocytes from oxidative stress-induced cell death. In summary, we reported that PPR signaling in osteocytes is important for protecting the skeleton from age-induced bone loss by restraining osteoclast's activity and protecting osteocytes from oxidative stresses.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Vaibhav Saini
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher A. Petty
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Majed Alshehri
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Chao Shi
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, P.R. China
| | - Jordan M. Spatz
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Roberto Santos
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Carly M. Newell
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Tim Y. Huang
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Alejandro Kochen
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Ji W. Kim
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Christodoulos K. Constantinou
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | - Hiroaki Saito
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Kathryn D. Held
- Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric Hesse
- Heisenberg-Group for Molecular Skeletal Biology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Gries KJ, Zysik VS, Jobe TK, Griffin N, Leeds BP, Lowery JW. Muscle-derived factors influencing bone metabolism. Semin Cell Dev Biol 2021; 123:57-63. [PMID: 34756782 DOI: 10.1016/j.semcdb.2021.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
A significant amount of attention has been brought to the endocrine-like function of skeletal muscle on various tissues, particularly with bone. Several lines of investigation indicate that the physiology of both bone and muscle systems may be regulated by a given stimulus, such as exercise, aging, and inactivity. Moreover, emerging evidence indicates that bone is heavily influenced by soluble factors derived from skeletal muscle (i.e., muscle-to-bone communication). The purpose of this review is to discuss the regulation of bone remodeling (formation and/or resorption) through skeletal muscle-derived cytokines (hereafter myokines) including the anti-inflammatory cytokine METRNL and pro-inflammatory cytokines (e.g., TNF-α, IL-6, FGF-2 and others). Our goal is to highlight possible therapeutic opportunities to improve muscle and bone health in aging.
Collapse
Affiliation(s)
- Kevin J Gries
- Program in Exercise & Sports Science, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Biomedical Science, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA.
| | - Victoria S Zysik
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Tyler K Jobe
- Program in Exercise & Sports Science, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Nicole Griffin
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Benjamin P Leeds
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Clinical Affairs, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| | - Jonathan W Lowery
- Bone & Muscle Research Group, Marian University, 3200 Cold Spring Road, Indianapolis, IN 46222, USA; Division of Biomedical Science, Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, IN 46222, USA
| |
Collapse
|
4
|
Bjørnerem Å, Wang X, Bui M, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E. Menopause-Related Appendicular Bone Loss is Mainly Cortical and Results in Increased Cortical Porosity. J Bone Miner Res 2018; 33:598-605. [PMID: 29218771 DOI: 10.1002/jbmr.3333] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 11/06/2022]
Abstract
After menopause, remodeling becomes unbalanced and rapid. Each of the many remodeling transactions deposits less bone than it resorbed, producing microstructural deterioration. Trabecular bone is said to be lost more rapidly than cortical bone. However, because 80% of the skeleton is cortical, we hypothesized that most menopause-related bone loss and changes in bone microstructure are cortical, not trabecular in origin, and are the result of intracortical remodeling. Distal tibial and distal radial microstructure were quantified during 3.1 years (range, 1.5 to 4.5 years) of follow-up using high-resolution peripheral quantitative computed tomography and StrAx software in 199 monozygotic and 125 dizygotic twin pairs aged 25 to 75 years in Melbourne, Australia. The annual increases in tibial cortical porosity accelerated, being 0.44%, 0.80%, and 1.40% in women remaining premenopausal, transitioning to perimenopause, and from perimenopausal to postmenopause, respectively. Porosity increased in the compact-appearing, outer, and inner transitional zones of the cortex (all p < 0.001). The annual decrease in trabecular bone volume/tissue volume (BV/TV) also accelerated, being 0.17%, 0.26%, and 0.31%, respectively. Little bone loss was observed before menopause. The reduction in BV/TV was due to a decrease in trabecular number (p < 0.001). The greatest bone loss, 7.7 mg hydroxyapatite (HA) annually, occurred in women transitioning from perimenopausal to postmenopause and of this, 6.1 mg HA (80%) was cortical. Results were similar for the distal radius. Despite microarchitectural changes, no significant bone loss was observed before menopause. Over 90% of appendicular bone loss occurs during and after menopause, over 80% is cortical, and this may explain why 80% of fractures are appendicular. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynaecology, University Hospital of North Norway, Tromsø, Norway
| | - Xiaofang Wang
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Ali Ghasem-Zadeh
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Roger Zebaze
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Endocrine Centre, Austin Health, University of Melbourne, Melbourne, Australia.,Institute for Health and Ageing (IHA), Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Bjørnerem Å, Ghasem-Zadeh A, Wang X, Bui M, Walker SP, Zebaze R, Seeman E. Irreversible Deterioration of Cortical and Trabecular Microstructure Associated With Breastfeeding. J Bone Miner Res 2017; 32:681-687. [PMID: 27736021 DOI: 10.1002/jbmr.3018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
Estrogen deficiency associated with menopause is accompanied by an increase in the rate of bone remodeling and the appearance of a remodeling imbalance; each of the greater number of remodeling transactions deposits less bone than was resorbed, resulting in microstructural deterioration. The newly deposited bone is also less completely mineralized than the older bone resorbed. We examined whether breastfeeding, an estrogen-deficient state, compromises bone microstructure and matrix mineral density. Distal tibial and distal radial microarchitecture were quantified using high-resolution peripheral quantitative computed tomography in 58 women before, during, and after breastfeeding and in 48 controls during follow-up of 1 to 5 years. Five months of exclusive breastfeeding increased cortical porosity by 0.6% (95% confidence interval [CI] 0.3-0.9), reduced matrix mineralization density by 0.26% (95% CI 0.12-0.41) (both p < 0.01), reduced trabecular number by 0.22 per mm (95% CI 0.15-0.28), and increased trabecular separation by 0.07 mm (95% CI 0.05-0.08) (all p < 0.001). Relative to prebreastfeeding, at a median of 2.6 years (range 1 to 4.8) after cessation of breastfeeding, cortical porosity remained 0.58 SD (95% CI 0.48-0.68) higher, matrix mineralization density remained 1.28 SD (95% CI 1.07-1.49) lower, and trabeculae were 1.33 SD (95% CI 1.15-1.50) fewer and 1.06 SD (95% CI 0.91-1.22) more greatly separated (all p < 0.001). All deficits were greater than in controls. The results were similar at distal radius. Bone microstructure may be irreversibly deteriorated after cessation of breastfeeding at appendicular sites. Studies are needed to establish whether this deterioration compromises bone strength and increases fracture risk later in life. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Ali Ghasem-Zadeh
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Xiaofang Wang
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Susan P Walker
- Mercy Hospital for Women, Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, Australia
| | - Roger Zebaze
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Endocrine Centre and Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.,Institute of Health and Ageing, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
6
|
Paschalis EP, Gamsjaeger S, Hassler N, Klaushofer K, Burr D. Ovarian hormone depletion affects cortical bone quality differently on different skeletal envelopes. Bone 2017; 95:55-64. [PMID: 27826024 DOI: 10.1016/j.bone.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 12/31/2022]
Abstract
The physical properties of bone tissue are determined by the organic and mineral matrix, and are one aspect of bone quality. As such, the properties of mineral and matrix are a major contributor to bone strength, independent of bone mass. Cortical bone quality may differ regionally on the three skeletal envelopes that compose it. Each of these envelopes may be affected differently by ovarian hormone depletion. Identifying how these regions vary in their tissue adaptive response to ovarian hormones can inform our understanding of how tissue quality contributes to overall bone strength in postmenopausal women. We analyzed humeri from monkeys that were either SHAM-operated or ovariectomized. Raman microspectroscopic analysis was performed as a function of tissue age based on the presence of multiple fluorescent double labels, to determine whether bone compositional properties (mineral/matrix ratio, tissue water, glycosaminoglycan, lipid, and pyridinoline contents, and mineral maturity/crystallinity) are similar between periosteal, osteonal, and endosteal surfaces, as well as to determine the effects of ovarian hormone depletion on them. The results indicate that mineral and organic matrix characteristics, and kinetics of mineral and organic matrix modifications as a function of tissue age are different at periosteal vs. osteonal and endosteal surfaces. Ovarian hormone depletion affects the three cortical surfaces (periosteal, osteonal, endosteal) differently. While ovarian hormone depletion does not significantly affect the quality of either the osteoid or the most recently mineralized tissue, it significantly affects the rate of subsequent mineral accumulation, as well as the kinetics of organic matrix modifications, culminating in significant differences within interstitial bone. These results highlight the complexity of the cortical bone compartments, add to existing knowledge on the effects of ovarian hormone depletion on local cortical bone properties, and may contribute to a better understanding of the location specific action of drugs used in the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- E P Paschalis
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria.
| | - S Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - N Hassler
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - K Klaushofer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - D Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017. [PMID: 27807202 DOI: 10.1152/physrev.00033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
9
|
Shigdel R, Osima M, Ahmed LA, Joakimsen RM, Eriksen EF, Zebaze R, Bjørnerem Å. Bone turnover markers are associated with higher cortical porosity, thinner cortices, and larger size of the proximal femur and non-vertebral fractures. Bone 2015; 81:1-6. [PMID: 26112819 DOI: 10.1016/j.bone.2015.06.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022]
Abstract
Bone turnover markers (BTM) predict bone loss and fragility fracture. Although cortical porosity and cortical thinning are important determinants of bone strength, the relationship between BTM and cortical porosity has, however, remained elusive. We therefore wanted to examine the relationship of BTM with cortical porosity and risk of non-vertebral fracture. In 211 postmenopausal women aged 54-94 years with non-vertebral fractures and 232 age-matched fracture-free controls from the Tromsø Study, Norway, we quantified femoral neck areal bone mineral density (FN aBMD), femoral subtrochanteric bone architecture, and assessed serum levels of procollagen type I N-terminal propeptide (PINP) and C-terminal cross-linking telopeptide of type I collagen (CTX). Fracture cases exhibited higher PINP and CTX levels, lower FN aBMD, larger total and medullary cross-sectional area (CSA), thinner cortices, and higher cortical porosity of the femoral subtrochanter than controls (p≤0.01). Each SD increment in PINP and CTX was associated with 0.21-0.26 SD lower total volumetric BMD, 0.10-0.14 SD larger total CSA, 0.14-0.18 SD larger medullary CSA, 0.13-0.18 SD thinner cortices, and 0.27-0.33 SD higher porosity of the total cortex, compact cortex, and transitional zone (all p≤0.01). Moreover, each SD of higher PINP and CTX was associated with increased odds for fracture after adjustment for age, height, and weight (ORs 1.49; 95% CI, 1.20-1.85 and OR 1.22; 95% CI, 1.00-1.49, both p<0.05). PINP, but not CTX, remained associated with fracture after accounting for FN aBMD, cortical porosity or cortical thickness (OR ranging from 1.31 to 1.39, p ranging from 0.005 to 0.028). In summary, increased BTM levels are associated with higher cortical porosity, thinner cortices, larger bone size and higher odds for fracture. We infer that this is produced by increased periosteal apposition, intracortical and endocortical remodeling; and that these changes in bone architecture are predisposing to fracture.
Collapse
Affiliation(s)
- Rajesh Shigdel
- Department of Health and Care Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Marit Osima
- Department of Community Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Luai A Ahmed
- Department of Health and Care Sciences, UiT-The Arctic University of Norway, Tromsø, Norway; Institute of Public Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ragnar M Joakimsen
- Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Department of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Erik F Eriksen
- Department of Clinical Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Roger Zebaze
- Endocrine Centre, Austin Health, University of Melbourne, Australia
| | - Åshild Bjørnerem
- Department of Health and Care Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
10
|
Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:421746. [PMID: 26247020 PMCID: PMC4515490 DOI: 10.1155/2015/421746] [Citation(s) in RCA: 946] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
Abstract
Bone tissue is continuously remodeled through the concerted actions of bone cells, which include bone resorption by osteoclasts and bone formation by osteoblasts, whereas osteocytes act as mechanosensors and orchestrators of the bone remodeling process. This process is under the control of local (e.g., growth factors and cytokines) and systemic (e.g., calcitonin and estrogens) factors that all together contribute for bone homeostasis. An imbalance between bone resorption and formation can result in bone diseases including osteoporosis. Recently, it has been recognized that, during bone remodeling, there are an intricate communication among bone cells. For instance, the coupling from bone resorption to bone formation is achieved by interaction between osteoclasts and osteoblasts. Moreover, osteocytes produce factors that influence osteoblast and osteoclast activities, whereas osteocyte apoptosis is followed by osteoclastic bone resorption. The increasing knowledge about the structure and functions of bone cells contributed to a better understanding of bone biology. It has been suggested that there is a complex communication between bone cells and other organs, indicating the dynamic nature of bone tissue. In this review, we discuss the current data about the structure and functions of bone cells and the factors that influence bone remodeling.
Collapse
|
11
|
Klein-Nulend J, van Oers RFM, Bakker AD, Bacabac RG. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J Biomech 2014; 48:855-65. [PMID: 25582356 DOI: 10.1016/j.jbiomech.2014.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/26/2022]
Abstract
Adaptation of bone to mechanical stresses normally produces a bone architecture that combines a proper resistance against failure with a minimal use of material. This adaptive process is governed by mechanosensitive osteocytes that transduce the mechanical signals into chemical responses, i.e. the osteocytes release signaling molecules, which orchestrate the recruitment and activity of bone forming osteoblasts and/or bone resorbing osteoclasts. Computer models have shown that the maintenance of a mechanically-efficient bone architecture depends on the intensity and spatial distribution of the mechanical stimulus as well as on the osteocyte response. Osteoporosis is a condition characterized by a reduced bone mass and a compromized resistance of bone against mechanical loads, which has led us to hypothesize that mechanotransduction by osteocytes is altered in osteoporosis. One of the major causal factors for osteoporosis is the loss of estrogen, the major hormonal regulator of bone metabolism. Loss of estrogen may increase osteocyte-mediated activation of bone remodeling, resulting in impaired bone mass and architecture. In this review we highlight current insights on how osteocytes perceive mechanical stimuli placed on whole bones. Particular emphasis is placed on the role of estrogen in signaling pathway activation by mechanical stimuli, and on computer simulation in combination with cell biology to unravel biological processes contributing to bone strength.
Collapse
Affiliation(s)
- Jenneke Klein-Nulend
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.
| | - René F M van Oers
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands; Department of Dental Materials Science, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Rommel G Bacabac
- Department of Physics, Medical Biophysics Group, University of San Carlos, Cebu City, Philippines
| |
Collapse
|
12
|
Manolagas SC, Parfitt AM. For whom the bell tolls: distress signals from long-lived osteocytes and the pathogenesis of metabolic bone diseases. Bone 2013; 54:272-8. [PMID: 23010104 PMCID: PMC3574964 DOI: 10.1016/j.bone.2012.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
Abstract
Osteocytes are long-lived and far more numerous than the short-lived osteoblasts and osteoclasts. Immured within the lacunar-canalicular system and mineralized matrix, osteocytes are ideally located throughout the bone to detect the need for, and accordingly choreograph, the bone regeneration process by independently controlling rate limiting steps of bone resorption and formation. Consistent with this role, emerging evidence indicates that signals arising from apoptotic and old/or dysfunctional osteocytes are seminal culprits in the pathogenesis of involutional, post-menopausal, steroid-, and immobilization-induced osteoporosis. Osteocyte-originated signals may also contribute to the increased bone fragility associated with bone matrix disorders like osteogenesis imperfecta, and perhaps the rapid reversal of bone turnover above baseline following discontinuation of anti-resorptive treatments, like denosumab.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology & Metabolism, Center for Osteoporosis & Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
13
|
Jahani M, Genever PG, Patton RJ, Ahwal F, Fagan MJ. The effect of osteocyte apoptosis on signalling in the osteocyte and bone lining cell network: a computer simulation. J Biomech 2012; 45:2876-83. [PMID: 23040883 DOI: 10.1016/j.jbiomech.2012.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/18/2012] [Accepted: 08/09/2012] [Indexed: 02/03/2023]
Abstract
Osteocytes play a critical role in the regulation of bone remodelling by translating strain due to mechanical loading into biochemical signals transmitted through the interconnecting lacuno-canalicular network to bone lining cells (BLCs) on the bone surface. This work aims to examine the effects of disruption of that intercellular communication by simulation of osteocyte apoptosis in the bone matrix. A model of a uniformly distributed osteocyte network has been developed that simulates the signalling through the network to the BLCs based on strain level. Bi-directional and asymmetric communication between neighbouring osteocytes and BLCs is included. The effect of osteocyte apoptosis is examined by preventing signalling at and through the affected cells. The simulation shows that apoptosis of only 3% of the osteocyte cells leads to a significant reduction in the peak signal at the BLCs. Furthermore, experiments with the model confirm how important the location and density of the apoptotic osteocytes are to the signalling received at the bone surface. With 5% and 9% osteocyte apoptosis, the mean peak BLC levels were reduced by 25% and 37% respectively. Such a significant reduction in the signal at the BLCs may explain a possible mechanism that leads to the increased remodelling and eventual bone loss observed with osteoporosis. More generally, it provides a unique framework for a broader exploration of the role of osteocyte and bi-directional and asymmetric cell-cell communication in mechanotransduction, and the effects of disruption to that communication.
Collapse
Affiliation(s)
- Masoumeh Jahani
- Department of Engineering, University of Hull, Hull, HU6 7RX, UK.
| | | | | | | | | |
Collapse
|
14
|
Carew EO. A semi-empirical cell dynamics model for bone turnover under external stimulus. J Biomech Eng 2012; 134:024503. [PMID: 22482678 DOI: 10.1115/1.4005761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The normal periodic turnover of bone is referred to as remodeling. In remodeling, old or damaged bone is removed during a 'resorption' phase and new bone is formed in its place during a 'formation' phase in a sequence of events known as coupling. Resorption is preceded by an 'activation' phase in which the signal to remodel is initiated and transmitted. Remodeling is known to involve the interaction of external stimuli, bone cells, calcium and phosphate ions, and several proteins, hormones, molecules, and factors. In this study, a semi-empirical cell dynamics model for bone remodeling under external stimulus that accounts for the interaction between bone mass, bone fluid calcium, bone calcium, and all three major bone cell types, is presented. The model is formulated to mimic biological coupling by solving separately and sequentially systems of ODEs for the activation, resorption, and formation phases of bone remodeling. The charateristic time for resorption (20 days) and the amount of resorption (~0.5%) are fixed for all simulations, but the formation time at turnover is an output of the model. The model was used to investigate the effects of different types of strain stimuli on bone turnover under bone fluid calcium balance and imbalance conditions. For bone fluid calcium balance, the model predicts complete turnover after 130 days of formation under constant 1000 microstrain stimulus; after 47 days of formation under constant 2000 microstrain stimulus; after 173 days of formation under strain-free conditions, and after 80 days of formation under monotonic increasing strain stimulus from 1000 to 2000 microstrain. For bone fluid calcium imbalance, the model predicts that complete turnover occurs after 261 days of formation under constant 1000 microstrain stimulus and that turnover never occurs under strain-free conditions. These predictions were not impacted by mean dynamic input strain stimuli of 1000 and 2000 microstrain at 1 Hz and 1000 microstrain amplitude. The formation phase of remodeling lasts longer than the resorption phase, increased strain stimulus accelerates bone turnover, while absence of strain significantly delays or prevents it, and formation time for turnover under monotonic increasing strain conditions is intermediate to those for constant strain stimuli at the minimum and maximum monotonic strain levels. These results are consistent with the biology, and with Frost's mechanostat theory.
Collapse
Affiliation(s)
- E Owen Carew
- Department of Mathematical Sciences, Kent State University at Salem, Salem, OH 44460, USA.
| |
Collapse
|
15
|
Bjørnerem Å, Ghasem-Zadeh A, Bui M, Wang X, Rantzau C, Nguyen TV, Hopper JL, Zebaze R, Seeman E. Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: a twin study. Bone 2011; 49:1125-30. [PMID: 21872686 DOI: 10.1016/j.bone.2011.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 11/24/2022]
Abstract
All postmenopausal women become estrogen deficient but not all remodel their skeleton rapidly or lose bone rapidly. As remodeling requires a surface to be initiated upon, we hypothesized that a volume of mineralized bone assembled with a larger internal surface area is more accessible to being remodeled, and so decayed, after menopause. We measured intracortical, endocortical and trabecular bone surface area and microarchitecture of the distal tibia and distal radius in 185 healthy female twin pairs aged 40 to 61 years using high-resolution peripheral quantitative computed tomography (HR-pQCT). We used generalized estimation equations to analyze (i) the trait differences across menopause, (ii) the relationship between remodeling markers and bone surface areas, and (iii) robust regression to estimate associations between within-pair differences. Relative to premenopausal women, postmenopausal women had higher remodeling markers, larger intracortical and endocortical bone surface area, higher intracortical porosity, smaller trabecular bone surface area and fewer trabeculae at both sites (all p<0.01). Postmenopausal women had greater deficits in cortical than trabecular bone mass at the distal tibia (-0.98 vs. -0.12 SD, p<0.001), but similar deficits at the distal radius (-0.45 vs. -0.39 SD, p=0.79). A 1 SD higher tibia intracortical bone surface area was associated with 0.22-0.29 SD higher remodeling markers, about half the 0.53-0.67 SD increment in remodeling markers across menopause (all p<0.001). A 1 SD higher porosity was associated with 0.20-0.30 SD higher remodeling markers. A 1 SD lower trabecular bone surface area was associated with 0.15-0.18 SD higher remodeling markers (all p<0.01). Within-pair differences in intracortical and endocortical bone surface areas at both sites and porosity at the distal tibia were associated with within-pair differences in some remodeling markers (p=0.05 to 0.09). We infer intracortical remodeling may be self perpetuating by creating intracortical porosity and so more bone surface for remodeling to occur upon, while remodeling upon the trabecular bone surface is self limiting because it removes trabeculae with their surface.
Collapse
|
16
|
Rochefort GY, Pallu S, Benhamou CL. Osteocyte: the unrecognized side of bone tissue. Osteoporos Int 2010; 21:1457-69. [PMID: 20204595 DOI: 10.1007/s00198-010-1194-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/28/2009] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Osteocytes represent 95% of all bone cells. These cells are old osteoblasts that occupy the lacunar space and are surrounded by the bone matrix. They possess cytoplasmic dendrites that form a canalicular network for communication between osteocytes and the bone surface. They express some biomarkers (osteopontin, beta3 integrin, CD44, dentin matrix protein 1, sclerostin, phosphate-regulating gene with homologies to endopeptidases on the X chromosome, matrix extracellular phosphoglycoprotein, or E11/gp38) and have a mechano-sensing role that is dependent upon the frequency, intensity, and duration of strain. DISCUSSION The mechanical information transmitted into the cytoplasm also triggers a biological cascade, starting with NO and PGE(2) and followed by Wnt/beta catenin signaling. This information is transmitted to the bone surface through the canalicular network, particularly to the lining cells, and is able to trigger bone remodeling by directing the osteoblast activity and the osteoclastic resorption. Furthermore, the osteocyte death seems to play also an important role. The outcome of micro-cracks in the vicinity of osteocytes may interrupt the canalicular network and trigger cell apoptosis in the immediate surrounding environment. This apoptosis appears to transmit a message to the bone surface and activate remodeling. The osteocyte network also plays a recognized endocrine role, particularly concerning phosphate regulation and vitamin D metabolism. Both the suppression of estrogen following menopause and chronic use of systemic glucocorticoids induce osteocyte apoptosis. On the other hand, physical activity has a positive impact in the reduction of apoptosis. In addition, some osteocyte molecular elements like sclerostin, connexin 43, E11/gp38, and DKK1 are emerging as promising targets for the treatment of various osteo-articular pathologies.
Collapse
Affiliation(s)
- G Y Rochefort
- INSERM Research Unit 658, Centre Hospitalier Régional, 1 rue Porte Madeleine, 45 032 Orleans, France.
| | | | | |
Collapse
|
17
|
Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 2010; 31:266-300. [PMID: 20051526 PMCID: PMC3365845 DOI: 10.1210/er.2009-0024] [Citation(s) in RCA: 839] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205-7199, USA.
| |
Collapse
|
18
|
Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab 2010; 21:369-74. [PMID: 20223679 PMCID: PMC2880220 DOI: 10.1016/j.tem.2010.01.010] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 01/17/2023]
Abstract
The adverse effects of aging of other organs (ovaries at menopause) on the skeleton are well known, but ironically little is known of skeletal aging itself. Evidence indicates that age-related changes, such as oxidative stress, are fundamental mechanisms of the decline of bone mass and strength. Unlike the short-lived osteoclasts and osteoblasts, osteocytes--former osteoblasts entombed in the mineralized matrix--live as long as 50 years, and their death is dependent on skeletal age. Osteocyte death is a major contributor to the decline of bone strength with age, and the likely mechanisms are oxidative stress, autophagy failure and nuclear pore "leakiness". Unraveling these mechanisms should improve understanding of the age-related increase in fractures and suggest novel targets for its prevention.
Collapse
Affiliation(s)
- Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, AR 72205, USA.
| | | |
Collapse
|
19
|
Martin-Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O'Brien CA, Manolagas SC. The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 2010; 24:323-34. [PMID: 20053716 DOI: 10.1210/me.2009-0354] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)alpha from the monocyte/macrophage cell lineage in mice (ERalpha(LysM)(-/-)) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERalpha(LysM)(-/-) were resistant to the proapoptotic effect of 17beta-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERalpha knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERalpha was as effective as 17beta-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERalpha. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERalpha. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton.
Collapse
Affiliation(s)
- Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin TJ, Seeman E. Bone remodelling: its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 2008; 22:701-22. [PMID: 19028353 DOI: 10.1016/j.beem.2008.07.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.
Collapse
|
21
|
Lewiecki EM, Miller PD. Renal safety of intravenous bisphosphonates in the treatment of osteoporosis. Expert Opin Drug Saf 2007; 6:663-72. [PMID: 17967155 DOI: 10.1517/14740338.6.6.663] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oral bisphosphonates are the mainstay of treatment for osteoporosis but cannot be used in some patients due to gastrointestinal contraindications, gastrointestinal intolerance, malabsorption or the inability to comply with dosing requirements. In such patients, intravenous bisphosphonates are a useful alternative. This review summarises the renal safety issues associated with the use of intravenous bisphosphonates for osteoporosis. Intravenous bisphosphonates are generally well tolerated, which may be a reflection of their selective activity in bone and metabolic stability. Adverse effects on renal function are primarily related to infusion rate and dose. Due to lack of data, no conclusions can be made regarding bisphosphonate safety in patients with intrinsic renal disease or an estimated glomerular filtration rate of < 30 ml/min.
Collapse
Affiliation(s)
- E Michael Lewiecki
- University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| | | |
Collapse
|
22
|
Vega D, Maalouf NM, Sakhaee K. CLINICAL Review #: the role of receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin: clinical implications. J Clin Endocrinol Metab 2007; 92:4514-21. [PMID: 17895323 DOI: 10.1210/jc.2007-0646] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Receptor activator of nuclear factor-kappaB ligand (RANKL), receptor activator of nuclear factor-kappaB (RANK), and osteoprotegerin (OPG) play a central role in bone remodeling and disorders of mineral metabolism. EVIDENCE ACQUISITION A PubMed search was conducted from January 1992 until 2007 for basic, observational, and clinical studies in subjects with disorders related to imbalances in the RANK/RANKL/OPG system. EVIDENCE SYNTHESIS RANK, RANKL, and OPG are members of the TNF receptor superfamily. The pathways involving them in conjunction with various cytokines and calciotropic hormones play a pivotal role in bone remodeling. Several studies involving mutations in the genes encoding RANK and OPG concluded in the discovery of a number of inherited skeletal disorders. In addition, basic and clinical studies established a consistent relationship between the RANK/RANKL/OPG pathway and skeletal lesions related to disorders of mineral metabolism. These studies were a stepping stone in further defining the role of the RANK/RANKL/OPG pathway in osteoporosis, rheumatoid arthritis, bone loss associated with malignancy-related skeletal diseases, and its relationship to vascular calcifications. Subsequently, the further understanding of this pathway led to the development of new therapeutic modalities including the human monoclonal antibody to RANKL and recombinant OPG as a target for treatment of postmenopausal osteoporosis and multiple myeloma. CONCLUSIONS The RANK/RANKL/OPG system mediates the effects of calciotropic hormones and, consequently, alterations in their ratio are key in the development of several clinical conditions. New agents with the potential to block effects of RANKL have emerged for treatment of postmenopausal osteoporosis and malignancy-related skeletal disease.
Collapse
Affiliation(s)
- Damaris Vega
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8885, USA
| | | | | |
Collapse
|
23
|
Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 2007; 22:1492-501. [PMID: 17542686 DOI: 10.1359/jbmr.070518] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the initial demonstration of the phenomenon in murine and human bone sections approximately 10 yr ago, appreciation of the biologic significance of osteoblast apoptosis has contributed greatly not only to understanding the regulation of osteoblast number during physiologic bone remodeling, but also the pathogenesis of metabolic bone diseases and the pharmacology of some of the drugs used for their treatment. It is now appreciated that all major regulators of bone metabolism including bone morphogenetic proteins (BMPs), Wnts, other growth factors and cytokines, integrins, estrogens, androgens, glucocorticoids, PTH and PTH-related protein (PTHrP), immobilization, and the oxidative stress associated with aging contribute to the regulation of osteoblast and osteocyte life span by modulating apoptosis. Moreover, osteocyte apoptosis has emerged as an important regulator of remodeling on the bone surface and a critical determinant of bone strength, independently of bone mass. The detection of apoptotic osteoblasts in bone sections remains challenging because apoptosis represents only a tiny fraction of the life span of osteoblasts, not unlike a 6-mo-long terminal illness in the life of a 75-yr-old human. Importantly, the phenomenon is 50 times less common in human bone biopsies because human osteoblasts live longer and are fewer in number. Be that as it may, well-controlled assays of apoptosis can yield accurate and reproducible estimates of the prevalence of the event, particularly in rodents where there is an abundance of osteoblasts for inspection. In this perspective, we focus on the biological significance of the phenomenon for understanding basic bone biology and the pathogenesis and treatment of metabolic bone diseases and discuss limitations of existing techniques for quantifying osteoblast apoptosis in human biopsies and their methodologic pitfalls.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
24
|
Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O'Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007; 282:27285-27297. [PMID: 17623659 PMCID: PMC3119455 DOI: 10.1074/jbc.m702810200] [Citation(s) in RCA: 507] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Both aging and loss of sex steroids have adverse effects on skeletal homeostasis, but whether and how they may influence each others negative impact on bone remains unknown. We report herein that both female and male C57BL/6 mice progressively lost strength (as determined by load-to-failure measurements) and bone mineral density in the spine and femur between the ages of 4 and 31 months. These changes were temporally associated with decreased rate of remodeling as evidenced by decreased osteoblast and osteoclast numbers and decreased bone formation rate; as well as increased osteoblast and osteocyte apoptosis, increased reactive oxygen species levels, and decreased glutathione reductase activity and a corresponding increase in the phosphorylation of p53 and p66(shc), two key components of a signaling cascade that are activated by reactive oxygen species and influences apoptosis and lifespan. Exactly the same changes in oxidative stress were acutely reproduced by gonadectomy in 5-month-old females or males and reversed by estrogens or androgens in vivo as well as in vitro. We conclude that the oxidative stress that underlies physiologic organismal aging in mice may be a pivotal pathogenetic mechanism of the age-related bone loss and strength. Loss of estrogens or androgens accelerates the effects of aging on bone by decreasing defense against oxidative stress.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Li Han
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Marta Martin-Millan
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Lilian I Plotkin
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Scott A Stewart
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Paula K Roberson
- Department of Biostatistics, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Health Care System, Little Rock, Arkansas 72205
| | - Stavroula Kousteni
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Teresita Bellido
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - A Michael Parfitt
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert S Weinstein
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, and the.
| |
Collapse
|
25
|
Affiliation(s)
- E Seeman
- Austin Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|