1
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
2
|
Liu Y, Zhang J, Wang C, Guo G, Huo W, Xia C, Chen L, Zhang Y, Pei C, Liu Q. Effects of guanidinoacetic acid supplementation on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1522-1529. [PMID: 36184578 DOI: 10.1002/jsfa.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 08/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Considering the high energy demand of lactation and the potential of guanidinoacetic acid (GAA) addition on the increase in creatine supply for cows, the present study investigated the effects of 0, 0.3, 0.6 and 0.9 g kg-1 dry matter (DM) of GAA supplementation on lactation performance, nutrient digestion and ruminal fermentation in dairy cows. The study used 40 mid-lactation multiparous Holstein cows and the study duration was 100 days. RESULTS DM intake was not affected, but milk and milk component yields and feed efficiency increased linearly with increasing GAA addition. The total-tract digestibility of DM, organic matter, neutral detergent fibre, acid detergent fibre and non-fibre carbohydrates increased linearly and that of crude protein increased quadratically with increasing GAA addition. When the addition level of GAA increased, ruminal pH, molar percentages of butyrate, isobutyrate and isovalerate and the acetate-to-propionate ratio decreased linearly, and the total volatile fatty acids concentration and propionate molar percentage also increased linearly, whereas the acetate molar percentage and ammonia-N concentration were unaltered. The activities of fibrolytic enzymes, α-amylase and protease increased linearly. The populations of total bacteria, fungi, Ruminococcus albus, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminobacter amylophilus and Prevotella ruminicola increased linearly, whereas protozoa and methanogens decreased linearly with increasing GAA addition. As for the blood metabolites, concentrations of glucose, urea nitrogen and methionine were unchanged, total protein, albumin, creatine and homocysteine increased linearly, and folate decreased linearly with increasing GAA supply. CONCLUSION The results of the present study indicate that supplementation of GAA improved milk performance and rumen fermentation in lactating dairy cows. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjia Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Jing Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Cong Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Gang Guo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Wenjie Huo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Chengqiang Xia
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Lei Chen
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yawei Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Caixia Pei
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Qiang Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
3
|
Tsikas D. Determination of equilibria constants of arginine:glycine amidinotransferase (AGAT)-catalyzed reactions using concentrations of circulating amino acids. Amino Acids 2023; 55:203-213. [PMID: 36477890 PMCID: PMC9950171 DOI: 10.1007/s00726-022-03218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Arginine:glycine amidinotransferase (AGAT) catalyzes mainly two reactions that generate 1) L-homoarginine (hArg) from L-arginine and L-lysine (Kharg) and 2) guanidinoacetate (GAA) and L-ornithine from L-arginine and glycine (Kgaa). Previously, we found that pharmacological treatment of Becker muscular dystrophy (BMD) patients with metformin or L-citrulline resulted in antidromic effects on serum hArg and GAA concentrations, seemingly acting as an inhibitor and effector of AGAT activity, respectively. Here, we used data of this study as a model to determine Kharg and Kgaa values by using the concentrations of the participating amino acids measured in serum samples of the BMD patients. The study aimed to prove the general utility of this approach to investigate effects of amino acids and drugs on AGAT-catalyzed reactions in vivo in humans.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Escalante G, Gonzalez AM, St Mart D, Torres M, Echols J, Islas M, Schoenfeld BJ. Analysis of the efficacy, safety, and cost of alternative forms of creatine available for purchase on Amazon.com: are label claims supported by science? Heliyon 2022; 8:e12113. [PMID: 36544833 PMCID: PMC9761713 DOI: 10.1016/j.heliyon.2022.e12113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Creatine monohydrate (CM) is an established and effective dietary supplement, but it is not the only form of creatine. We analyzed forms of creatine for sale on Amazon.com" title = "http://Amazon.com">Amazon.com and evaluated if the advertised claims are supported by the available scientific evidence. We also analyzed the cost per gram of the forms of creatine. A total of 175 creatine supplements were included and we reported the total creatine content per serving, form(s) of creatine in products, product claims, and prevalence of products third party certified. The identified products contained 16 forms of creatine other than CM. The prevalence of products containing functional ingredients with CM or forms of creatine was 29.7%, and the prevalence of products containing blends of different forms of creatine was 21.7%. Only 8% of products were third party certified. The products using only CM (n = 91) had a mean price per gram of $0.12 ± 0.08, whereas products using only other forms of creatine (n = 32) had a mean price per gram of $0.26 ± 0.17. Approximately 88% of alternative creatine products in this study are classified as having limited to no evidence to support bioavailability, efficacy, and safety.
Collapse
|
5
|
Chu KO, Chan KP, Yip YWY, Chu WK, Wang C, Pang CP. Systemic and Ocular Anti-Inflammatory Mechanisms of Green Tea Extract on Endotoxin-Induced Ocular Inflammation. Front Endocrinol (Lausanne) 2022; 13:899271. [PMID: 35909558 PMCID: PMC9335207 DOI: 10.3389/fendo.2022.899271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Green tea extract (GTE) alleviated ocular inflammations in endotoxin-induced uveitis (EIU) rat model induced by lipopolysaccharide (LPS) but the underlying mechanism is unclear. Objectives To investigate the systematic and local mechanisms of the alleviation by untargeted metabolomics using liquid chromatography-tandem mass spectrometry. Methods Sprague-Dawley rats were divided into control group, LPS treatment group, and LPS treatment group treated with GTE two hours after LPS injection. The eyes were monitored by slip lamp and electroretinography examination after 24 hours. The plasma and retina were collected for metabolomics analysis. Results In LPS treated rats, the iris showed hyperemia. Plasma prostaglandins, arachidonic acids, corticosteroid metabolites, and bile acid metabolites increased. In the retina, histamine antagonists, corticosteroids, membrane phospholipids, free antioxidants, and sugars also increased but fatty acid metabolites, N-acetylglucosamine-6-sulphate, pyrocatechol, and adipic acid decreased. After GTE treatment, the a- and b- waves of electroretinography increased by 13%. Plasma phosphorylcholine lipids increased but plasma prostaglandin E1, cholanic metabolites, and glutarylglycine decreased. In the retina, tetranor-PGAM, pantothenic derivatives, 2-ethylacylcarinitine, and kynuramine levels decreased but anti-oxidative seleno-peptide level increased. Only phospholipids, fatty acids, and arachidonic acid metabolites in plasma and in the retina had significant correlation (p < 0.05, r > 0.4 or r < -0.4). Conclusions The results showed GTE indirectly induced systemic phosphorylcholine lipids to suppress inflammatory responses, hepatic damage, and respiratory mitochondrial stress in EIU rats induced by LPS. Phospholipids may be a therapeutic target of GTE for anterior chamber inflammation.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yolanda Wong Ying Yip
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, the Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Ostojic SM. Guanidinoacetic Acid as a Nutritional Adjuvant to Multiple Sclerosis Therapy. Front Hum Neurosci 2022; 16:871535. [PMID: 35634212 PMCID: PMC9134824 DOI: 10.3389/fnhum.2022.871535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tackling impaired bioenergetics in multiple sclerosis (MS) has been recently recognized as an innovative approach with therapeutic potential. Guanidinoacetic acid (GAA) is an experimental nutrient that plays a significant role in high-energy phosphate metabolism. The preliminary trials suggest beneficial effects of supplemental GAA in MS, with GAA augments biomarkers of brain energy metabolism and improves patient-reported features of the disease. GAA can also impact other metabolic footprints of MS, including demyelination, oxidative stress, and GABA-glutamate imbalance. In this mini-review article, we summarize studies evaluating GAA effectiveness in MS, explore mechanisms of GAA action, and discuss the challenges of using dietary GAA as an element of MS therapy.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
- Faculty of Sport and Physical Education (FSPE) Applied Bioenergetics Lab, University of Novi Sad, Novi Sad, Serbia
- Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- *Correspondence: Sergej M. Ostojic,
| |
Collapse
|
7
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022; 14:nu14050921. [PMID: 35267907 PMCID: PMC8912287 DOI: 10.3390/nu14050921] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion.
Collapse
|
9
|
Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare (Basel) 2022; 10:healthcare10020186. [PMID: 35206801 PMCID: PMC8872051 DOI: 10.3390/healthcare10020186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Factors influencing brain function and cognitive performance can be critical to athletic performance of esports athletes. This review aims to discuss the potential beneficial effects of micronutrients, i.e., vitamins, minerals and biologically active substances on cognitive functions of e-athletes. Minerals (iodine, zinc, iron, magnesium) and vitamins (B vitamins, vitamins E, D, and C) are significant factors that positively influence cognitive functions. Prevention of deficiencies of the listed ingredients and regular examinations can support cognitive processes. The beneficial effects of caffeine, creatine, and probiotics have been documented so far. There are many plant products, herbal extracts, or phytonutrients that have been shown to affect precognitive activity, but more research is needed. Beetroot juice and nootropics can also be essential nutrients for cognitive performance. For the sake of players’ eyesight, it would be useful to use lutein, which, in addition to improving vision and protecting against eye diseases, can also affect cognitive functions. In supporting the physical and mental abilities of e-athletes the base is a well-balanced diet with adequate hydration. There is a lack of sufficient evidence that has investigated the relationship between dietary effects and improved performance in esports. Therefore, there is a need for randomized controlled trials involving esports players.
Collapse
|
10
|
Effects of Delivering Guanidinoacetic Acid or Its Prodrug to the Neural Tissue: Possible Relevance for Creatine Transporter Deficiency. Brain Sci 2022; 12:brainsci12010085. [PMID: 35053827 PMCID: PMC8773658 DOI: 10.3390/brainsci12010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
The creatine precursor guanidinoacetate (GAA) was used as a dietary supplement in humans with no adverse events. Nevertheless, it has been suggested that GAA is epileptogenic or toxic to the nervous system. However, increased GAA content in rodents affected by guanidinoacetate methyltransferase (GAMT) deficiency might be responsible for their spared muscle function. Given these conflicting data, and lacking experimental evidence, we investigated whether GAA affected synaptic transmission in brain hippocampal slices. Incubation with 11.5 μM GAA (the highest concentration in the cerebrospinal fluid of GAMT-deficient patients) did not change the postsynaptic compound action potential. Even 1 or 2 mM had no effect, while 4 mM caused a reversible decrease in the potential. Guanidinoacetate increased creatine and phosphocreatine, but not after blocking the creatine transporter (also used by GAA). In an attempt to allow the brain delivery of GAA when there was a creatine transporter deficiency, we synthesized diacetyl guanidinoacetic acid ethyl ester (diacetyl-GAAE), a lipophilic derivative. In brain slices, 0.1 mM did not cause electrophysiological changes and improved tissue viability after blockage of the creatine transporter. However, diacetyl-GAAE did not increase creatine nor phosphocreatine in brain slices after blockage of the creatine transporter. We conclude that: (1) upon acute administration, GAA is neither epileptogenic nor neurotoxic; (2) Diacetyl-GAAE improves tissue viability after blockage of the creatine transporter but not through an increase in creatine or phosphocreatine. Diacetyl-GAAE might give rise to a GAA–phosphoGAA system that vicariates the missing creatine–phosphocreatine system. Our in vitro data show that GAA supplementation may be safe in the short term, and that a lipophilic GAA prodrug may be useful in creatine transporter deficiency.
Collapse
|
11
|
Ostojic SM. Safety of Dietary Guanidinoacetic Acid: A Villain of a Good Guy? Nutrients 2021; 14:75. [PMID: 35010949 PMCID: PMC8746922 DOI: 10.3390/nu14010075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
Guanidinoacetic acid (GAA) is a natural amino acid derivative that is well-recognized for its central role in the biosynthesis of creatine, an essential compound involved in cellular energy metabolism. GAA (also known as glycocyamine or betacyamine) has been investigated as an energy-boosting dietary supplement in humans for more than 70 years. GAA is suggested to effectively increase low levels of tissue creatine and improve clinical features of cardiometabolic and neurological diseases, with GAA often outcompeting traditional bioenergetics agents in maintaining ATP status during stress. This perhaps happens due to a favorable delivery of GAA through specific membrane transporters (such as SLC6A6 and SLC6A13), previously dismissed as un-targetable carriers by other therapeutics, including creatine. The promising effects of dietary GAA might be countered by side-effects and possible toxicity. Animal studies reported neurotoxic and pro-oxidant effects of GAA accumulation, with exogenous GAA also appearing to increase methylation demand and circulating homocysteine, implying a possible metabolic burden of GAA intervention. This mini-review summarizes GAA toxicity evidence in human nutrition and outlines functional GAA safety through benefit-risk assessment and multi-criteria decision analysis.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Department of Nutrition and Public Health, University of Agder, 4604 Kristiansand, Norway; ; Tel.: +47-38-14-13-64
- FSPE Applied Bioenergetics Lab, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Zanini D, Todorovic N, Korovljev D, Stajer V, Ostojic J, Purac J, Kojic D, Vukasinovic E, Djordjievski S, Sopic M, Guzonjic A, Ninic A, Erceg S, Ostojic SM. The effects of 6-month hydrogen-rich water intake on molecular and phenotypic biomarkers of aging in older adults aged 70 years and over: A randomized controlled pilot trial. Exp Gerontol 2021; 155:111574. [PMID: 34601077 DOI: 10.1016/j.exger.2021.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
In this randomized controlled pilot trial, we investigated the effects of a 6-month intake of hydrogen-rich water (HRW) on several molecular and phenotypic biomarkers of aging in older adults aged 70 years and over. Forty older adults (20 women) were randomly allocated in a parallel-group design to receive 0.5 L per day of HRW (15 ppm of hydrogen) or control drink (0 ppm of hydrogen) during a 6-month intervention period. The biomarkers assessed at baseline and 6-month follow up were molecular markers in the blood (DNA and chromosomes, nutrient sensing, protein, and lipid metabolism, oxidative stress and mitochondria, cell senescence, inflammation), brain metabolism, cognitive functioning, physical function and body composition, resting blood pressure, facial skin features, sleep outcomes, and health-related quality of life. The mean age, weight, and height of study participants were 76.0 ± 5.6 years, 78.2 ± 16.1 kg, height 167.5 ± 11.5 cm, respectively. A significant treatment vs. time interaction was found for telomere length (P = 0.049), with the length increased after HRW intervention (from 0.99 ± 0.15 at baseline to 1.02 ± 0.26 at follow up) and decreased after drinking control water (from 0.92 ± 0.27 to 0.79 ± 0.15). A marker of DNA methylation (Tet methylcytosine dioxygenase 2, TET2) expression at 6-month follow-up increased in both groups, yet the degree of elevation was significantly higher in HRW (from 0.81 ± 0.52 at baseline to 1.62 ± 0.66 at follow up) comparing to the control water (from 1.13 ± 0.82 to 1.76 ± 0.87) (P = 0.040). A strong trend for treatment vs. time interaction was found for a degree of DNA methylation (P = 0.166), with the methylation increased in the HRW group (from 120.6 ± 39.8 ng at baseline to 126.6 ± 33.8 ng at follow up) and decreased after taking control water (from 133.6 ± 52.9 ng to 121.2 ± 38.4 ng). HRW was superior to control water to increase brain choline and NAA levels in the left frontal grey matter, brain creatine at the right parietal white matter, and brain NAA at the right parietal mesial grey matter (P < 0.05). No significant differences were found between interventions for other outcomes (P > 0.05), except for a significantly improved chair stand performance after HRW intervention compared to the control water (P = 0.01). Owing to pleiotropic mechanisms of hydrogen action, this simple biomedical gas could be recognized as a possible anti-aging agent that tackles several hallmarks of aging, including loss of function and telomere length shortening. The study was registered at ClinicalTrials.gov (NCT04430803).
Collapse
Affiliation(s)
- Dragana Zanini
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | | | - Jelena Purac
- Faculty of Sciences, University of Novi Sad, Serbia.
| | | | | | | | - Miron Sopic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Azra Guzonjic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Ana Ninic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sanja Erceg
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia.
| |
Collapse
|
13
|
Camacho-Castillo L, Phillips-Farfán BV, Rosas-Mendoza G, Baires-López A, Toral-Ríos D, Campos-Peña V, Carvajal K. Increased oxidative stress contributes to enhance brain amyloidogenesis and blunts energy metabolism in sucrose-fed rat: effect of AMPK activation. Sci Rep 2021; 11:19547. [PMID: 34599229 PMCID: PMC8486781 DOI: 10.1038/s41598-021-98983-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
Metabolic disturbances are linked to neurodegenerative diseases such as Alzheimer disease (AD). However, the cellular mechanisms underlying this connection are unclear. We evaluated the role of oxidative stress (OS), during early metabolic syndrome (MetS), on amyloidogenic processes in a MetS rat model induced by sucrose. MetS caused OS damage as indicated by serum and hypothalamus lipid peroxidation and elevated serum catalase activity. Tissue catalase and superoxide dismutase activity were unchanged by MetS, but gene expression of nuclear factor erythroid-derived 2-like 2 (NFE2L2), which up-regulates expression of antioxidant enzymes, was higher. Expression of amyloid-β cleaving enzyme 1 (BACE-1) and amyloid precursor protein (APP), key proteins in the amyloidogenesis pathway, were slightly increased by sucrose-intake in the hippocampus and hypothalamus. Activation and expression of protein kinase B (PKB) and AMP-dependent protein kinase (AMPK), pivotal proteins in metabolism and energy signaling, were similarly affected in the hippocampus and hypothalamus of MetS rats. Brain creatine kinase activity decreased in brain tissues from rats with MetS, mainly due to irreversible oxidation. Chronic metformin administration partially reversed oxidative damage in sucrose-fed animals, together with increased AMPK activation; probably by modulating BACE-1 and NFE2L2. AMPK activation may be considered as a preventive therapy for early MetS and associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Luz Camacho-Castillo
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Gabriela Rosas-Mendoza
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Aidee Baires-López
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico
| | - Danira Toral-Ríos
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco", CD México, México
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco", CD México, México
| | - Karla Carvajal
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Insurgentes Sur 3700 C, Col. Insurgentes Cuicuilco, Del. Coyoacán, 04530, CD Mexico, Mexico.
| |
Collapse
|
14
|
Hu E, Ding R, Li T, Li P, Feng D, Hu W, Cui H, Zhu X, Sun P, Wang Y, Tang T. Temporal metabolomic alteration in rat brains of experimental intracerebral hemorrhage. Brain Res Bull 2021; 170:234-245. [PMID: 33631271 DOI: 10.1016/j.brainresbull.2021.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is the top lethal and disabling form of stroke. The pathophysiology of ICH is not fully understood yet. Metabolites are indicators and regulators of cellular processes. However, the overall brain metabolic pattern and the temporal alterations after ICH remain unknown. METHODS A total of 40 male rats were randomly assigned to sham group and ICH group. ICH was induced by collagenase Ⅶ. Body weight was assessed. Neurological deficits were evaluated by modified neurological severity score. Then, the perihematomal brain tissues were collected for metabolites detection using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The metabolic profiles were displayed by principal component analysis (PCA), partial least-squares-discriminant analysis (PLS-DA) and cluster analysis. The significant differential metabolites were screened by fold change > 2.0, the false discovery rate (FDR) < 0.05 and Variable Importance of Projection (VIP) > 1. Next, the relevant metabolic pathways were discerned by MetaboAnalyst website. A metabolite-protein interaction network was subsequentially constructed to further annotate the function of differential metabolites. RESULTS Rats suffered from compromised body weight increasement and impaired neurological function. The metabolomics profiles of brain tissues in the post-ICH rats were markedly different from those in the sham group on days 3 and 14. Thirty-four metabolites (bilirubin, uric acid, 6-Methylnicotinamide et al.) were abnormally upregulated in the acute stage, while 27 metabolites were disturbed in the recovery stage, including bilirubin, uric acid, and histamine et al. Seven and three metabolic pathways altered in the acute and recovery stage, respectively. Metabolite-protein interaction analysis revealed that the disturbed metabolites may participate in ICH pathophysiology by altering amino acid metabolism, peroxisome proliferators-activated receptor signaling pathway, fatty acid metabolism and urea cycle in the acute stage, while influencing amino acid metabolism, urea cycle and peroxisome in the recovery stage. CONCLUSIONS Our study mapped the pathological metabolomics profiles of the post-ICH rat brains in the acute and recovery phases. This work will assist in discovering novel therapeutic targets and treatments for ICH.
Collapse
Affiliation(s)
- En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ruoqi Ding
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Wang Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hanjin Cui
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaofei Zhu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Peng Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
15
|
Creatine Supplementation and Brain Health. Nutrients 2021; 13:nu13020586. [PMID: 33578876 PMCID: PMC7916590 DOI: 10.3390/nu13020586] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.
Collapse
|
16
|
Forbes SC, Candow DG, Ferreira LHB, Souza-Junior TP. Effects of Creatine Supplementation on Properties of Muscle, Bone, and Brain Function in Older Adults: A Narrative Review. J Diet Suppl 2021; 19:318-335. [PMID: 33502271 DOI: 10.1080/19390211.2021.1877232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aging is associated with reductions in muscle and bone mass and brain function, which may be counteracted by several lifestyle factors, of which exercise appears to be most beneficial. However, less than 20% of older adults (> 55 years of age) adhere to performing the recommended amount of resistance training (≥ 2 days/week) and less than 12% regularly meet the aerobic exercise guidelines (≥ 150 min/week of moderate to vigorous intensity aerobic exercise) required to achieve significant health benefits. Therefore, from a healthy aging and clinical perspective, it is important to determine whether other lifestyle interventions (independent of exercise) can have beneficial effects on aging muscle quality and quantity, bone strength, and brain function. Creatine, a nitrogen containing organic compound found in all cells of the body, has the potential to have favorable effects on muscle, bone, and brain health (independent of exercise) in older adults. The purpose of this narrative review is to examine and summarize the small body of research investigating the effects of creatine supplementation alone on measures of muscle mass and performance, bone mineral and strength, and indices of brain health in older adults.
Collapse
Affiliation(s)
- Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| | - Luis H B Ferreira
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tacito P Souza-Junior
- Research Group on Metabolism, Nutrition and Strength Training, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
17
|
|
18
|
Ostojic SM. Short-term GAA loading: Responders versus nonresponders analysis. Food Sci Nutr 2020; 8:4446-4448. [PMID: 32884724 PMCID: PMC7455984 DOI: 10.1002/fsn3.1744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/12/2022] Open
Abstract
Dietary guanidinoacetic acid (GAA) has been suggested to be advantageous for favorable changes in tissue bioenergetics in terms of responder versus nonresponder performance, yet no studies so far explored the proportion of two distinct populations following short-term GAA intervention. A secondary analysis of previously completed guanidinoacetic acid (GAA) trials has been carried out in aim to classify individuals into responders and nonresponders using cut-off criteria for an increase in intramuscular creatine. A total of 30 individuals (mean age = 34.5 years, women 66.7%) who were supplemented with up to 3 g/day of GAA for at least 28 days with total muscle creatine evaluated using 1.5 T magnetic resonance spectroscopy studies were included in this examination. Pre-post measures included total creatine content (creatine plus phosphocreatine) determined from the quadriceps muscle, with participants were classified by arbitrary cut-off points in three categories, including responders (>10% increase in total creatine content at follow-up), quasi-responders (5%-10% increase), and nonresponders (<5% increase in total intramuscular creatine at postadministration). An average change in total creatine content after GAA supplementation was 22.9%, with 13.3% participants were categorized as nonresponders, 6.6% as quasi-responders, and 80.0% as responders (p < .001). A fairly high prevalence of individuals sensitive to dietary GAA advances this innovative agent as a rather effective tool to improve muscle creatine levels for at least 10% or more during 28-day loading.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Faculty of Sport and Physical EducationUniversity of Novi SadNovi SadSerbia
- Faculty of Health SciencesUniversity of PecsPecsHungary
| |
Collapse
|
19
|
Ostojic SM. Overcoming restraints of dietary creatine. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Ostojic SM. Guanidinoacetic acid loading for improved location-specific brain creatine. Clin Nutr 2020; 40:324-326. [PMID: 32439266 DOI: 10.1016/j.clnu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND We conducted here a secondary analysis of previously completed guanidinoacetic acid (GAA) loading trials categorizing participants into responders and non-responders using cut-off points for an increase in the location-specific levels of brain creatine (e.g. thalamus, cerebellum, white and grey matter). METHODS A total of 19 healthy men (mean age = 24.8 years) who were supplemented with 3 g/d of GAA for 4 weeks, with total brain creatine evaluated using 1.5 T magnetic resonance spectroscopy (MRS) were included in this report. RESULTS An average elevation in total creatine content after 28-day GAA loading was 17.3% in the cerebellum (95% confidence interval [CI] from 9.7 to 24.9), 12.1% in the white matter (95% CI from 5.1 to 19.1), and 8.9% in the grey matter (95% CI from 5.2 to 12.6), while total creatine actually dropped in the thalamus at a follow-up for 9.1% (95% CI from 6.8 to 11.4). The prevalence of responders was the highest for the cerebellum (73.6%), followed by the white matter (47.3%) and the grey matter (42.1%), while only two individuals (10.5%) experienced a relevant rise in the thalamus creatine content at 28-day follow-up (P < 0.001). CONCLUSION This aftermath evaluation of previously published data suggests a relatively favorable (and location-specific) response rate to short-term GAA loading in healthy young men. A somewhat contrasting location-dependent pattern for GAA and creatine to positively affect brain creatine may be of great interest to the scientific community by dispensing different interventions to tackle poor bioenergetics in distinct brain regions.
Collapse
Affiliation(s)
- Sergej M Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia; Faculty of Health Sciences, University of Pecs, Pecs, Hungary.
| |
Collapse
|
21
|
Mendonça I, Watanabe P, Silva B, Boiago M, Panisson J, Andrade T, Campos A, Mello M. Dietary supplementation of guanidinoacetic acid for sows and their progenies: Performance, blood parameters and economic viability at nursery phase. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Sun N, Wu Y, Zhao L, He H, Mei D, Zhang S, Zhang X, Zhang M, Wang X. A rapid and sensitive HPLC-MS/MS method for determination of endogenous creatine biosynthesis precursors in plasma of children with viral myocarditis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:148-156. [PMID: 31039544 DOI: 10.1016/j.jchromb.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 01/17/2023]
Abstract
A simple, rapid and sensitive HPLC-MS/MS method for simultaneous determination of 4 of amino acids, guanidinoacetic acid, S-adenosylmethionine and S-adenosylhomocysteine in human plasma was developed and validated. The method requires no tedious sample preparation, derivatization reagents or ion-pairing reagents. Samples were prepared by combining plasma with a chilled mixture of acetonitrile (ACN) and water, followed by centrifugation and diluting the supernatant with 2 volumes of water. Analytes were detected with multiple reaction monitoring using a positive scan mode with electrospray ionization (ESI). In the assay, all the analytes showed good linearity over the investigated concentration range (r > 0.99). The accuracy expressed in relative error (RE) was between -5.0% and 13.2%, and the precision expressed in coefficient of variation (CV) ranged from 0.6% to 14.7%. In the two spiked levels (low and high), the averaged recoveries of analytes were between 45.0% and 110.9% and the recovery of internal standard was 92.0%. This method was successfully applied to studying the concentration changes of endogenous creatine (Cr) synthesis precursors in the plasma of children with viral myocarditis after intravenous administration of phosphocreatine (PCr).
Collapse
Affiliation(s)
- Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yunjiao Wu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Shuyv Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoyan Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Meng Zhang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Xiaoling Wang
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China.
| |
Collapse
|
23
|
Guanidinoacetic acid with creatine compared with creatine alone for tissue creatine content, hyperhomocysteinemia, and exercise performance: A randomized, double-blind superiority trial. Nutrition 2018; 57:162-166. [PMID: 30170305 DOI: 10.1016/j.nut.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/20/2018] [Accepted: 04/30/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Co-administration of creatine and guanidinoacetic acid (GAA) has been recently put forward as an advanced dietary strategy to optimize tissue bioenergetics. We hypothesized that creatine-GAA mixture would result in a more powerful rise in brain and skeletal muscle creatine, as compared to creatine supplementation alone. METHODS A randomized, double-blinded, crossover superiority trial has been performed at the University of Novi Sad from December 2016 to November 2017. A total of 14 healthy young men were randomized to receive GAA-creatine mixture (1 grams of GAA and 3 grams of creatine per day) or equimolar creatine (4 grams per day) by oral administration for 4 weeks. RESULTS Creatine-GAA mixture was superior to creatine alone to increase mean creatine levels in skeletal muscle (16.9 ± 20.2 vs. 2.0 ± 6.0%; P = 0.02) and grey matter (5.8 ± 5.3% vs. 1.5 ± 3.2%; P = 0.02), also for bench press performance (6.0% vs. 5.1%; P < 0.01). Compared with creatine administration alone, combined GAA and creatine resulted in less weight gain (1.6 ± 0.2 kg vs. 0.7 ± 0.2 kg; P < 0.01). No inter-group differences were observed in terms of cardiorespiratory endurance, serum biomarkers, or adverse events. CONCLUSIONS Creatine-GAA mixture appeared to be superior to creatine alone for up-swinging tissue creatine content and upper body strength, and tended toward a lower risk of weight gain in healthy active men. The formulation might be considered as a novel energy-boosting alternative to creatine alone in weight-sensitive setups. TRIAL REGISTRATION ClinicalTrials.govNCT03350282.
Collapse
|
24
|
Dolan E, Gualano B, Rawson ES. Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur J Sport Sci 2018; 19:1-14. [PMID: 30086660 DOI: 10.1080/17461391.2018.1500644] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ergogenic and therapeutic effects of increasing muscle creatine by supplementation are well-recognized. It appears that similar benefits to brain function and cognitive processing may also be achieved with creatine supplementation, however research in this area is more limited, and important knowledge gaps remain. The purpose of this review is to provide a comprehensive overview of the current state of knowledge about the influence of creatine supplementation on brain function in healthy individuals. It appears that brain creatine is responsive to supplementation, however higher, or more prolonged dosing strategies than those typically used to increase muscle creatine, may be required to elicit an increase in brain creatine. The optimal dosing strategy to induce this response, is currently unknown, and there is an urgent need for studies investigating this. When considering the influence of supplementation strategies on cognitive processes, it appears that creatine is most likely to exert an influence in situations whereby cognitive processes are stressed, e.g. during sleep deprivation, experimental hypoxia, or during the performance of more complex, and thus more cognitively demanding tasks. Evidence exists indicating that increased brain creatine may be effective at reducing the severity of, or enhancing recovery from mild traumatic brain injury, however, only limited data in humans are available to verify this hypothesis, thus representing an exciting area for further research.
Collapse
Affiliation(s)
- Eimear Dolan
- a Applied Physiology & Nutrition Research Group , Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Bruno Gualano
- a Applied Physiology & Nutrition Research Group , Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo , Sao Paulo , SP , Brazil
| | - Eric S Rawson
- b Department of Health, Nutrition, and Exercise Science , Messiah College , Mechanicsburg , PA , USA
| |
Collapse
|
25
|
Effects of single and combined metformin and L-citrulline supplementation on L-arginine-related pathways in Becker muscular dystrophy patients: possible biochemical and clinical implications. Amino Acids 2018; 50:1391-1406. [PMID: 30003335 DOI: 10.1007/s00726-018-2614-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
The L-arginine/nitric oxide synthase (NOS) pathway is considered to be altered in muscular dystrophy such as Becker muscular dystrophy (BMD). We investigated two pharmacological options aimed to increase nitric oxide (NO) synthesis in 20 male BMD patients (age range 21-44 years): (1) supplementation with L-citrulline (3 × 5 g/d), the precursor of L-arginine which is the substrate of neuronal NO synthase (nNOS); and (2) treatment with the antidiabetic drug metformin (3 × 500 mg/d) which activates nNOS in human skeletal muscle. We also investigated the combined use of L-citrulline (3 × 5 g/d) and metformin (3 × 500 mg/d). Before and after treatment, we measured in serum and urine samples the concentration of amino acids and metabolites of L-arginine-related pathways and the oxidative stress biomarker malondialdehyde (MDA). Compared to healthy subjects, BMD patients have altered NOS, arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) pathways. Metformin treatment resulted in concentration decrease of arginine and MDA in serum, and of homoarginine (hArg) and guanidinoacetate (GAA) in serum and urine. L-Citrulline supplementation resulted in considerable increase of the concentrations of amino acids and creatinine in the serum, and in their urinary excretion rates. Combined use of metformin and L-citrulline attenuated the effects obtained from their single administrations. Metformin, L-citrulline or their combination did not alter serum nitrite and nitrate concentrations and their urinary excretion rates. In conclusion, metformin or L-citrulline supplementation to BMD patients results in remarkable antidromic changes of the AGAT and GAMT pathways. In combination, metformin and L-citrulline at the doses used in the present study seem to abolish the biochemical effects of the single drugs in slight favor of L-citrulline.
Collapse
|
26
|
Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br J Nutr 2018; 120:131-140. [DOI: 10.1017/s0007114517003701] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis experiment was conducted to investigate the effects of guanidinoacetic acid (GAA) on productive performance, intestinal morphometric features, blood parameters and energy utilisation in broiler chickens. A total of 390 male broiler chicks (Ross 308) were assigned to six dietary treatments based on a factorial arrangement (2×3) across 1–15 and 15–35-d periods. Experimental treatments consisted of two basal diets with standard (STD; starter: 12·56 MJ/kg and grower: 12·97 MJ/kg) and reduction (LME; starter: 11·93 MJ/kg and grower: 12·33 MJ/kg) of apparent metabolisable energy (AME) requirement of broiler chickens each supplemented with 0, 0·6 and 1·2 g/kg GAA. Supplemental 1·2 g/kg GAA decreased the negative effects of feed energy reduction on weight gain across starter, growing and the entire production phases (P<0·05). Energy retention as fat and total energy retention were increased when birds received LME diets supplemented with 1·2 g/kg GAA (P<0·05). Net energy for production (NEp) and total heat production increased in birds fed LME diets containing 1·2 g/kg GAA (P<0·05). A significant correlation was observed between dietary NEp and weight gain of broilers (r 0·493; P=0·0055), whereas this relationship was not seen with AME. Jejunal villus height and crypt depth were lower in birds fed LME diets (P<0·05). Serum concentration of creatinine increased in broilers fed LME diets either supplemented with 1·2 g/kg GAA or without GAA supplementation (P<0·05). Supplemental GAA improved performance of chickens fed LME diet possibly through enhanced dietary NEp. The NEp could be preferred over the AME to assess response of broiler chickens to dietary GAA supplementation.
Collapse
|
27
|
Ostojic SM, Ostojic J. Human skeletal muscle contains no detectable guanidinoacetic acid. Appl Physiol Nutr Metab 2018; 43:647-649. [PMID: 29406829 DOI: 10.1139/apnm-2017-0873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading.
Collapse
Affiliation(s)
- Sergej M Ostojic
- a Applied Bioenergetics Laboratory, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad 21000, Serbia.,b University of Belgrade School of Medicine, 11000 Belgrade, Serbia
| | - Jelena Ostojic
- c Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
28
|
Dietary guanidinoacetic acid does not accumulate in the brain of healthy men. Eur J Nutr 2017; 57:3003-3005. [PMID: 29255931 DOI: 10.1007/s00394-017-1600-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
We conducted a secondary analysis of a previously completed trial to determine the effects of 8-week guanidinoacetic acid (GAA) loading on brain GAA levels in five healthy men. Brain magnetic resonance spectroscopy (1H-MRS) was taken at baseline and post-administration, with spectra additionally analyzed for brain GAA and glutamate concentrations using TARQUIN 4.3.10 software. Brain GAA levels remained essentially unchanged at follow-up (an increase of 7.7% from baseline levels; 95% confidence interval, - 24.1% to 39.5%; P = 0.88) when averaged across 12 white and grey matter voxel locations. No significant changes were found for brain glutamate levels during the study (P = 0.64). Supplemental GAA appears to be safe intervention concerning brain GAA deposition, at least with GAA dosages used.
Collapse
|
29
|
Vraneš M, Ostojić S, Tot A, Papović S, Gadžurić S. Experimental and computational study of guanidinoacetic acid self-aggregation in aqueous solution. Food Chem 2017; 237:53-57. [PMID: 28764030 DOI: 10.1016/j.foodchem.2017.05.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/21/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
In this work for the first time the physicochemical and thermal properties of guanidinoacetic acid (GAA) and its aqueous solutions have been performed to test for its viability as a potential dietary supplement. Thermal stability, viscosity, solubility and experimental density are determined. From measured densities the volumetric properties were estimated and discussed in the scope of GAA self-aggregation in aqueous solutions using experimental and computational results. Based on thermal stability and solubility measurements, it is found that GAA is more thermally stable but less soluble comparing to creatine due to a self-aggregation process that occurs at GAA concentrations higher than 0.013mol·dm-3. Existence of self-aggregation influences the macroscopic properties of aqueous GAA solutions, but also its bioavailability.
Collapse
Affiliation(s)
- Milan Vraneš
- Faculty of Science, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Sergej Ostojić
- Faculty of Sport and Physical Education, University of Novi Sad, Lovćenska 16, 21000 Novi Sad, Serbia.
| | - Aleksandar Tot
- Faculty of Science, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Snežana Papović
- Faculty of Science, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Slobodan Gadžurić
- Faculty of Science, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| |
Collapse
|
30
|
Ostojic SM. Co-administration of creatine and guanidinoacetic acid for augmented tissue bioenergetics: A novel approach? Biomed Pharmacother 2017; 91:238-240. [DOI: 10.1016/j.biopha.2017.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022] Open
|
31
|
Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, Candow DG, Kleiner SM, Almada AL, Lopez HL. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017; 14:18. [PMID: 28615996 PMCID: PMC5469049 DOI: 10.1186/s12970-017-0173-z] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Creatine is one of the most popular nutritional ergogenic aids for athletes. Studies have consistently shown that creatine supplementation increases intramuscular creatine concentrations which may help explain the observed improvements in high intensity exercise performance leading to greater training adaptations. In addition to athletic and exercise improvement, research has shown that creatine supplementation may enhance post-exercise recovery, injury prevention, thermoregulation, rehabilitation, and concussion and/or spinal cord neuroprotection. Additionally, a number of clinical applications of creatine supplementation have been studied involving neurodegenerative diseases (e.g., muscular dystrophy, Parkinson's, Huntington's disease), diabetes, osteoarthritis, fibromyalgia, aging, brain and heart ischemia, adolescent depression, and pregnancy. These studies provide a large body of evidence that creatine can not only improve exercise performance, but can play a role in preventing and/or reducing the severity of injury, enhancing rehabilitation from injuries, and helping athletes tolerate heavy training loads. Additionally, researchers have identified a number of potentially beneficial clinical uses of creatine supplementation. These studies show that short and long-term supplementation (up to 30 g/day for 5 years) is safe and well-tolerated in healthy individuals and in a number of patient populations ranging from infants to the elderly. Moreover, significant health benefits may be provided by ensuring habitual low dietary creatine ingestion (e.g., 3 g/day) throughout the lifespan. The purpose of this review is to provide an update to the current literature regarding the role and safety of creatine supplementation in exercise, sport, and medicine and to update the position stand of International Society of Sports Nutrition (ISSN).
Collapse
Affiliation(s)
- Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843-4243 USA
| | - Douglas S. Kalman
- Nutrition Research Unit, QPS, 6141 Sunset Drive Suite 301, Miami, FL 33143 USA
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328 USA
| | - Tim N. Ziegenfuss
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
| | - Robert Wildman
- Post Active Nutrition, 111 Leslie St, Dallas, TX 75208 USA
| | - Rick Collins
- Collins Gann McCloskey & Barry, PLLC, 138 Mineola Blvd., Mineola, NY 11501 USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2 Canada
| | | | | | - Hector L. Lopez
- The Center for Applied Health Sciences, 4302 Allen Road, STE 120, Stow, OH 44224 USA
- Supplement Safety Solutions, LLC, Bedford, MA 01730 USA
| |
Collapse
|
32
|
Mo JJ, Liu LY, Peng WB, Rao J, Liu Z, Cui LL. The effectiveness of creatine treatment for Parkinson's disease: an updated meta-analysis of randomized controlled trials. BMC Neurol 2017; 17:105. [PMID: 28577542 PMCID: PMC5457735 DOI: 10.1186/s12883-017-0885-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background The effectiveness of creatine in treating Parkinson’s disease (PD) has not been conclusively determined. Therefore, we performed a meta-analysis to address this issue. Methods The Cochrane Central Register of Controlled Trials, PUBMED, EMBASE, and other databases were searched, and outcomes measured by the Total Unified Parkinson’s Disease Rating Scale (UPDRS) and the Schwab & England Scale were analyzed. Results Five randomized controlled trials (RCTs) were selected, and 1339 participants were included in the analysis. There were no significant differences between the control and treatment groups in the total, mental, activities of daily living (ADL), or motor UPDRS scores, but an improvement in Schwab & England Scale scores was observed. Conclusions Creatine has no observed benefit in PD patients, although more correlated studies are still needed.
Collapse
Affiliation(s)
- Jia-Jie Mo
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.2 Wenming Road, Zhanjiang, Guangdong, 524023, People's Republic of China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, No.2 Wenming Road, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Lin-Ying Liu
- Department of Neurology, Chenzhou No. 1 People's Hospital, Chenzhou, People's Republic of China
| | - Wei-Bin Peng
- Graduate School, Guangzhou Medical University, Guangzhou, City, People's Republic of China
| | - Jie Rao
- Department of Pathology, People's Hospital of Wuhan University, Wuhan City, People's Republic of China
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.2 Wenming Road, Zhanjiang, Guangdong, 524023, People's Republic of China. .,Department of Neurology, Affiliated Hospital of Guangdong Medical University, No.2 Wenming Road, Zhanjiang, Guangdong, 524023, People's Republic of China.
| | - Li-Li Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, No.2 Wenming Road, Zhanjiang, Guangdong, 524023, People's Republic of China.
| |
Collapse
|
33
|
Ostojic SM. A new perspective to improve brain bioenergetics in disorders with functional GAMT and CT1. Biomed Pharmacother 2016; 84:1833. [PMID: 27825802 DOI: 10.1016/j.biopha.2016.10.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022] Open
Affiliation(s)
- Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Lovcenska 16, 21000 Novi Sad, Serbia.
| |
Collapse
|