1
|
Dong Z, Jiang W, Li H, DeWan AT, Zhao H. LDER-GE estimates phenotypic variance component of gene-environment interactions in human complex traits accurately with GE interaction summary statistics and full LD information. Brief Bioinform 2024; 25:bbae335. [PMID: 38980374 PMCID: PMC11232466 DOI: 10.1093/bib/bbae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Gene-environment (GE) interactions are essential in understanding human complex traits. Identifying these interactions is necessary for deciphering the biological basis of such traits. In this study, we review state-of-art methods for estimating the proportion of phenotypic variance explained by genome-wide GE interactions and introduce a novel statistical method Linkage-Disequilibrium Eigenvalue Regression for Gene-Environment interactions (LDER-GE). LDER-GE improves the accuracy of estimating the phenotypic variance component explained by genome-wide GE interactions using large-scale biobank association summary statistics. LDER-GE leverages the complete Linkage Disequilibrium (LD) matrix, as opposed to only the diagonal squared LD matrix utilized by LDSC (Linkage Disequilibrium Score)-based methods. Our extensive simulation studies demonstrate that LDER-GE performs better than LDSC-based approaches by enhancing statistical efficiency by ~23%. This improvement is equivalent to a sample size increase of around 51%. Additionally, LDER-GE effectively controls type-I error rate and produces unbiased results. We conducted an analysis using UK Biobank data, comprising 307 259 unrelated European-Ancestry subjects and 966 766 variants, across 217 environmental covariate-phenotype (E-Y) pairs. LDER-GE identified 34 significant E-Y pairs while LDSC-based method only identified 23 significant E-Y pairs with 22 overlapped with LDER-GE. Furthermore, we employed LDER-GE to estimate the aggregated variance component attributed to multiple GE interactions, leading to an increase in the explained phenotypic variance with GE interactions compared to considering main genetic effects only. Our results suggest the importance of impacts of GE interactions on human complex traits.
Collapse
Affiliation(s)
- Zihan Dong
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06510, United States
- Center for Perinatal, Pediatric and Environmental Epidemiology, 60 College Street, Yale School of Public Health, New Haven, CT 06510, United States
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06510, United States
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06510, United States
| | - Andrew T DeWan
- Center for Perinatal, Pediatric and Environmental Epidemiology, 60 College Street, Yale School of Public Health, New Haven, CT 06510, United States
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College Street, New Haven, CT 06510, United States
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT 06510, United States
| |
Collapse
|
2
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
3
|
Lin WY, Liu YL, Yang AC, Tsai SJ, Kuo PH. Active Cigarette Smoking Is Associated With an Exacerbation of Genetic Susceptibility to Diabetes. Diabetes 2020; 69:2819-2829. [PMID: 33004471 DOI: 10.2337/db20-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/26/2020] [Indexed: 11/13/2022]
Abstract
The heritability levels of two traits for diabetes diagnosis, serum fasting glucose (FG) and glycated hemoglobin (HbA1c), were estimated to be 51-62%. Studies have shown that cigarette smoking is a modifiable risk factor for diabetes. It is important to uncover whether smoking may modify the genetic risk of diabetes. This study included unrelated Taiwan Biobank subjects in a discovery cohort (TWB1) of 25,460 subjects and a replication cohort (TWB2) of 58,774 subjects. Genetic risk score (GRS) of each TWB2 subject was calculated with weights retrieved from the TWB1 analyses. We then assessed the significance of GRS-smoking interactions on FG, HbA1c, and diabetes while adjusting for covariates. A total of five smoking measurements were investigated, including active smoking status, pack-years, years as a smoker, packs smoked per day, and hours as a passive smoker per week. Except for passive smoking, all smoking measurements were associated with FG, HbA1c, and diabetes (P < 0.0033) and were associated with an exacerbation of the genetic risk of FG and HbA1c (P Interaction < 0.0033). For example, each 1 SD increase in GRS is associated with a 1.68% higher FG in subjects consuming one more pack of cigarettes per day (P Interaction = 1.9 × 10-7). Smoking cessation is especially important for people who are more genetically predisposed to diabetes.
Collapse
Affiliation(s)
- Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
- Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Wang X, Wu J, Wu Y, Wang M, Wang Z, Wu T, Chen D, Tang X, Qin X, Wu Y, Hu Y. Pleiotropic Effects of a KCNQ1 Variant on Lipid Profiles and Type 2 Diabetes: A Family-Based Study in China. J Diabetes Res 2020; 2020:8278574. [PMID: 32016123 PMCID: PMC6982365 DOI: 10.1155/2020/8278574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The genetic variant rs2237895, located in the Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCNQ1) gene, has been replicated to be associated with type 2 diabetes mellitus (T2DM) susceptibility, but the relationship with lipids is conflicting. Furthermore, the common genetic predisposition to T2DM and lipids was not fully detected. METHODS In total, 5839 individuals (2220 were T2DM patients) across 2885 families were included. The effect of rs2237895 on T2DM and lipids was estimated using linear regression and logistic regression models after adjustment for multiple covariates. Mediation analysis was then used to test whether KCNQ1 participated in T2DM pathogenesis via lipid-mediated pathways. RESULTS Per allele-C of rs2237895 was associated with 17% (11-23%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%, P < 0.001) increased T2DM risk. Moreover, it was correlated with 5% (1-9%. CONCLUSION KCNQ1 had pleiotropic effects on lipids and T2DM, and the unexpected genetic effect on association of HDL-C with T2DM was observed, indicating the different pathways to lipids and T2DM. Further research studies are needed to verify potential biological mechanisms.
Collapse
Affiliation(s)
- Xiaowen Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Junhui Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Zijing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xun Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Xueying Qin
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
- Medical Informatics Center, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Wang W, Zhang J, Yang X, Huang F. Hypoglycemic activity of CPU2206: A novel peptide from sika (Cervus nippon Temminck) antler. J Food Biochem 2019; 43:e13063. [PMID: 31576599 DOI: 10.1111/jfbc.13063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022]
Abstract
Previous work had extracted and purified an antidiabetic peptide named CPU2206 with 7,127.6 Da. In this work, the toxicity of CPU2206 was first evaluated by daily administration to ICR mice, and after 28 days of administration, the body weight and lipid metabolism of the mice did not change significantly, which proved its safety and reliability. Second, further studies have focused on its hypoglycemic effects by daily intraperitoneal injection to alloxan-induced diabetic mice and KK-Ay mice, showing that CPU2206 effectively decreased the blood glucose and corresponding indicators of diabetic mice. Daily administration of CPU2206 nearly normalized the lipid metabolic parameters in diabetic mice. Histological examination also validated that CPU2206 ameliorated the pancreas injuries induced by alloxan or alleviated islet hypertrophy caused by insulin resistance in KK-Ay mice. To sum up, a totally new bioactive peptide CPU2206 obtained from sika antler showed significantly antidiabetic as well as lipid-lowering effects in diabetic mice. PRACTICAL APPLICATIONS: Antler has been used as a traditional Chinese medicine to invigorate primordial energy, enrich the blood, strengthen bones, and improve both male and female sexual functions for thousands of years. Traditionally, velvet antler can be grinded directly and taken orally, or used in porridge, wine and meat stew. Our experiment enriches the research on the function of edible antlers, provides the basis for developing it into functional health food, and on the other hand, provides an idea for finding new antidiabetic drugs.
Collapse
Affiliation(s)
- Wanqiu Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Junying Zhang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiaoting Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| | - Fengjie Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Desmettre T. [Epigenetics in age-related macular degeneration (AMD) - French translation of the article]. J Fr Ophtalmol 2018; 41:981-990. [PMID: 30454959 DOI: 10.1016/j.jfo.2018.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/02/2018] [Accepted: 06/07/2018] [Indexed: 02/02/2023]
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, Royaume-Uni.
| |
Collapse
|
7
|
Desmettre TJ. Epigenetics in Age-related Macular Degeneration (AMD). J Fr Ophtalmol 2018; 41:e407-e415. [PMID: 30458925 DOI: 10.1016/j.jfo.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023]
Abstract
Age-related Macular Degeneration (AMD) is a complex multifactorial condition involving multiple genetic, environmental and constitutional factors. Inflammation, oxidative stress and lipid metabolism seem to be the most important factors in the pathogenesis of the disease. The importance of genetic factors has mainly been revealed with the influence of histocompatibility complement factor H (CFH) variations and the ARSM2 susceptibility gene. Another component, epigenetics, could help to explain some of the relationships between environmental and genetic factors. Epigenetics is defined as the study of modulations of gene activity that can be transmitted over cell divisions without involving mutation of the DNA sequence. The molecules that are involved in these mechanisms are referred to as the epigenome. The mechanisms involve DNA methylation, histone modification, chromatin remodeling, and gene inhibition by non-coding RNA. Epigenetics could explain how the environment may induce relatively stable changes in traits or even diseases, possibly inheritable over several generations. Epigenetic traits established during development, and/or acquired under the influence of nutritional factors or other environmental factors, could influence the interactions between genes and the environment. Several authors have recently shown the influence of epigenetic factors in the pathogenesis of ocular diseases such as cataract, dry eye, glaucoma, diabetic retinopathy and more recently AMD. A better understanding of the involvement of genetic variants at risk, their relationship with epigenetics and environmental factors would certainly help to better assess the risk of developing AMD or better understand recent changes in the incidence of the disease.
Collapse
Affiliation(s)
- T J Desmettre
- Centre de rétine médicale, 187, rue de Menin, 59520 Marquette-Lez-Lille, France; London International Medical Centre, 18-22 Queen Anne Street, London, W1G 8HU, United Kingdom.
| |
Collapse
|
8
|
Sellami N, Lamine LB, Turki A, Sarray S, Jailani M, Al-Ansari AK, Ghorbel M, Mahjoub T, Almawi WY. Association of VEGFA variants with altered VEGF secretion and type 2 diabetes: A case-control study. Cytokine 2018. [PMID: 29533820 DOI: 10.1016/j.cyto.2018.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) contributes to type 2 diabetes (T2DM) pathogenesis, and genetic variations in VEGFA gene were suggested to influence VEGF secretion and T2DM pathogenesis. AIM To evaluate the association of specific VEGFA variants with altered VEGF levels, and with T2DM among Tunisians. SUBJECTS AND METHODS A retrospective case-control study, performed on 815 T2DM patients, and 805 healthy controls. VEGF levels were measured by ELISA, genotyping of VEGFA variants was done by allelic exclusion method (real-time PCR). RESULTS MAF of rs1570360, rs2010963, rs25648, rs833068, rs3025036, and rs3025039 were significantly different between T2DM cases and controls. Increased T2DM risk was associated with rs699947, rs1570360, and rs3025020, while reduced T2DM risk was seen with rs1547651, rs2010963, rs25648, rs3025036, and rs3025039 genotypes, thus assigning T2DM susceptibility and protection, respectively. Reduced VEGF levels were associated with rs833061, rs2010963, and rs3025039 heterozygosity and rs3025036 major allele homozygosity in T2DM cases, while increased VEGF levels were seen in rs833070 homozygous major allele genotype. Both rs699947 and rs1570360 positively, while rs2010963 and rs3025036 negatively correlated with fasting glucose. In addition, rs699947 positively correlated with LDL-cholesterol, and rs3025039 positively correlated with diabetes duration, but negatively with HbA1c and serum triglycerides. Haploview analysis identified Block 1 containing 8 loci, and Block 2 with the remaining 3 loci. Haplotypes ACTGCCGG and AACGGCGA (Block 1) were negatively associated with T2DM, while haplotype CCC was positively and haplotype CGC (Block 2) were negatively associated with T2DM. CONCLUSION This study confirms the contribution of altered VEGF secretion, resulting from genetic variation in VEGFA gene into T2DM pathogenesis, hence supporting role for VEGFA as T2DM candidate locus.
Collapse
Affiliation(s)
- Nejla Sellami
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia; Faculty of Science of Bizerte, University of Carthage, Tunisia
| | - Laila Ben Lamine
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Amira Turki
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia; Department of Laboratory Medicine, Northern Border University, Ara'ar, Saudi Arabia
| | - Sameh Sarray
- Faculty of Sciences, El-Manar University, Tunis, Tunisia; College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohammed Jailani
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Abrar K Al-Ansari
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohamed Ghorbel
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Touhami Mahjoub
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Tunisia
| | - Wassim Y Almawi
- Faculty of Sciences, El-Manar University, Tunis, Tunisia; School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|