1
|
Locke M, Bruccoleri G. Skeletal Muscle Heat Shock Protein Content and the Repeated Bout Effect. Int J Mol Sci 2024; 25:4017. [PMID: 38612826 PMCID: PMC11011896 DOI: 10.3390/ijms25074017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The "Repeated Bout Effect" (RBE) occurs when a skeletal muscle is preconditioned with a few lengthening contractions (LC) prior to exposing the muscle to a greater number of LC. The preconditioning (PC) results in significantly less damage and preservation of force. Since it takes only a few LC to increase muscle heat shock protein (HSP) content, it was of interest to examine the relationship between HSPs and the RBE. To do this, one tibialis anterior (TA) muscle from Sprague-Dawley rats (n = 5/group) was preconditioned with either 0, 5, or 15 lengthening contractions (LC) and exposed to a treatment of 60 LC 48 h later. Preconditioning TA muscles with 15 LC, but not 5 LC, significantly elevated muscle αB-crystallin (p < 0.05), HSP25 (p < 0.05), and HSP72 content (p < 0.001). These preconditioned TA muscles also showed a significantly (p < 0.05) reduced loss of active torque throughout the subsequent 60 LC. While there was a trend for all preconditioned muscles to maintain higher peak torque levels throughout the 60 LC, no significant differences were detected between the groups. Morphologically, preconditioned muscles appeared to show less discernible muscle fiber damage. In conclusion, an elevated skeletal muscle HSP content from preconditioning may contribute to the RBE.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada;
| | | |
Collapse
|
2
|
Rentería LI, Zheng X, Valera I, Machin DR, Garcia CK, Leon LR, Laitano O. Ovariectomy aggravates the pathophysiological response to exertional heat stroke in mice. J Appl Physiol (1985) 2023; 134:1224-1231. [PMID: 37022961 PMCID: PMC10151055 DOI: 10.1152/japplphysiol.00092.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Female mice have a greater capacity for exercising in the heat than male mice, reaching greater power output and longer times of heat exposure before succumbing to exertional heat stroke (EHS). Differences in body mass, size, or testosterone do not explain these distinct sex responses. Whether the ovaries could account for the superior exercise capacity in the heat in females remains unknown. Here, we determined the influence of ovariectomy (OVX) on exercise capacity in the heat, thermoregulation, intestinal damage, and heat shock response in a mouse EHS model. We performed bilateral OVX (n = 10) or sham (n = 8) surgeries in young adult (4 mo) female C57/BL6J mice. Upon recovery from surgeries, mice exercised on a forced wheel placed inside an environmental chamber set at 37.5 °C and 40% relative humidity until experiencing loss of consciousness (LOC). Terminal experiments were performed 3 h after LOC. OVX increased body mass by the time of EHS (sham = 3.8 ± 1.1, OVX = 8.3 ± 3.2 g, P < 0.05), resulted in shorter running distance (sham = 753 ± 189, OVX = 490 ± 87 m, P < 0.05), and shorter time to LOC (sham = 126.3 ± 21, OVX = 99.1 ± 19.8 min, P < 0.05). Histopathological assessment of the intestines revealed damage in the jejunum (sham = 0.2 ± 0.7, OVX = 2.1 ± 1.7 AU, P < 0.05) and ileum (sham = 0.3 ± 0.5, OVX = 1.8 ± 1.4 AU, P < 0.05). OVX increased mesenteric microvascular density (sham = 101 ± 25, OVX = 156 ± 66 10-2 mm/mm2, P < 0.05) and decreased concentration of circulatory heat shock protein 72 (HSP72) (sham = 26.7 ± 15.8, OVX = 10.3 ± 4.6 ng/mL, P < 0.05). No differences were observed in cytokines or chemokines between groups. Our findings indicate that OVX aggravates the pathophysiological response to EHS in mice.NEW & NOTEWORTHY Females outperform males in a mouse model of exertional heat stroke (EHS). Here, we show for the first time the impact of ovariectomy (OVX) on EHS pathophysiology. OVX resulted in a shorter exercise capacity in the heat, greater intestinal damage, and lower heat shock response following EHS.
Collapse
Affiliation(s)
- Liliana I Rentería
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Xiangyu Zheng
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Isela Valera
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Daniel R Machin
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
| | - Christian K Garcia
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Lisa R Leon
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- College of Health and Human Sciences, Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, United States
- College of Health and Human Performance, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|