1
|
Iñiguez C, Capó-Bauçà S, Niinemets Ü, Stoll H, Aguiló-Nicolau P, Galmés J. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO 2 concentrating mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:897-918. [PMID: 31820505 DOI: 10.1111/tpj.14643] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/15/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.
Collapse
Affiliation(s)
- Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| | - Heather Stoll
- Department of Earth Sciences, ETH Zürich, Sonnegstrasse 5, 8092, Zürich, Switzerland
| | - Pere Aguiló-Nicolau
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, Palma, Balearic Islands, Spain
| |
Collapse
|
2
|
Jackson CJ, Reyes-Prieto A. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic archaeplastida. Genome Biol Evol 2014; 6:2774-85. [PMID: 25281844 PMCID: PMC4224345 DOI: 10.1093/gbe/evu218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2014] [Indexed: 12/16/2022] Open
Abstract
A significant limitation when testing the putative single origin of primary plastids and the monophyly of the Archaeplastida supergroup, comprised of the red algae, viridiplants, and glaucophytes, is the scarce nuclear and organellar genome data available from the latter lineage. The Glaucophyta are a key algal group when investigating the origin and early diversification of photosynthetic eukaryotes. However, so far only the plastid and mitochondrial genomes of the glaucophytes Cyanophora paradoxa (strain CCMP 329) and Glaucocystis nostochinearum (strain UTEX 64) have been completely sequenced. Here, we present the complete mitochondrial genomes of Gloeochaete wittrockiana SAG 46.84 (36.05 kb; 33 protein-coding genes, 6 unidentified open reading frames [ORFs], and 28 transfer RNAs [tRNAs]) and Cyanoptyche gloeocystis SAG 4.97 (33.24 kb; 33 protein-coding genes, 6 unidentified ORFs, and 26 tRNAs), which represent two genera distantly related to the "well-known" Cyanophora and Glaucocystis. The mitochondrial gene repertoire of the four glaucophyte species is highly conserved, whereas the gene order shows considerable variation. Phylogenetic analyses of 14 mitochondrial genes from representative taxa from the major eukaryotic supergroups, here including novel sequences from the glaucophytes Cyanophora tetracyanea (strain NIES-764) and Cyanophora biloba (strain UTEX LB 2766), recover a clade uniting the three Archaeplastida lineages; this recovery is dependent on our novel glaucophyte data, demonstrating the importance of greater taxon sampling within the glaucophytes.
Collapse
Affiliation(s)
- Christopher J Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
3
|
Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. PHOTOSYNTHESIS RESEARCH 2010; 106:123-34. [PMID: 20524069 DOI: 10.1007/s11120-010-9563-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 05/17/2010] [Indexed: 05/18/2023]
Abstract
The phylogenetically and morphologically diverse eukaryotic algae are typically oxygenic photolithotrophs. They have a diversity of incompletely understood mechanisms of inorganic carbon acquisition: this article reviews four areas where investigations continue. The first topic is diffusive CO(2) entry. Most eukaryotic algae, like all cyanobacteria, have inorganic carbon concentrating mechanisms (CCMs). The ancestral condition was presumably the absence of a CCM, i.e. diffusive CO(2) entry, as found in a small minority of eukaryotic algae today; however, it is likely that, as is found in several cases, this condition is due to a loss of a CCM. There are a number of algae which are in various respects intermediate between diffusive CO(2) entry and occurrence of a CCM: further study is needed on this aspect. A second topic is the nature of cyanelles and their role in inorganic carbon assimilation. The cyanelles (plastids) of the euglyphid amoeba Paulinella have been acquired relatively recently by endosymbiosis with genetic integration of an α-cyanobacterium with a Form 1A Rubisco. The α-carboxysomes in the cyanelles are presumably involved in a CCM, but further investigation is needed.Also called cyanelles are the plastids of glaucocystophycean algae, but is it now clear that these were derived from the β-cyanobacterial ancestor of all plastids other than that of Paulinella. The resemblances of the central body of the cyanelles of glaucocystophycean algae to carboxysomes may not reflect derivation from cyanobacterial β-carboxysomes; although it is clear that these algae have CCMs but these are now well characterized. The other two topics concern CCMs in other eukaryotic algae; these CCMs arose polyphyletically and independently of the cyanobacterial CCMs. It is generally believed that eukaryotic algal, like cyanobacterial, CCMs are based on active transport of an inorganic carbon species and/or protons, and they have C(3) biochemistry. This is the case for the organism considered as the third topic, i.e. Chlamydomonas reinhardtii, the eukaryotic alga with the best understood CCM. This CCM involves HCO(3)(-) conversion to CO(2) in the thylakoid lumen so the external inorganic carbon must cross four membranes in series with a final CO(2) effux from the thylakoid. More remains to be investigated about this CCM. The final topic is that of the occurrence of C(4)-like metabolism in the CCMs of marine diatoms. Different conclusions have been reached depending on the organism investigated and the techniques used, and several aspects require further study.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, College of Life Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
4
|
|
5
|
Meyer M, Seibt U, Griffiths H. To concentrate or ventilate? Carbon acquisition, isotope discrimination and physiological ecology of early land plant life forms. Philos Trans R Soc Lond B Biol Sci 2008; 363:2767-78. [PMID: 18487135 PMCID: PMC2606768 DOI: 10.1098/rstb.2008.0039] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A comparative study has been made of the photosynthetic physiological ecology and carbon isotope discrimination characteristics for modern-day bryophytes and closely related algal groups. Firstly, the extent of bryophyte distribution and diversification as compared with more advanced land plant groups is considered. Secondly, measurements of instantaneous carbon isotope discrimination (Delta), photosynthetic CO(2) assimilation and electron transport rates were compared during the drying cycles. The extent of surface diffusion limitation (when wetted), internal conductance and water use efficiency (WUE) at optimal tissue water content (TWC) were derived for liverworts and a hornwort from contrasting habitats and with differing degrees of thallus ventilation (as intra-thalline cavities and internal airspaces). We also explore how the operation of a biophysical carbon-concentrating mechanism (CCM) tempers isotope discrimination characteristics in two other hornworts, as well as the green algae Coleochaete orbicularis and Chlamydomonas reinhardtii. The magnitude of Delta was compared for each life form over a drying curve and used to derive the surface liquid-phase conductance (when wetted) and internal conductance (at optimal TWC). The magnitude of external and internal conductances, and WUE, was higher for ventilated, compared with non-ventilated, liverworts and hornworts, but the values were similar within each group, suggesting that both factors have been optimized for each life form. For the hornworts, leakiness of the CCM was highest for Megaceros vincentianus and C. orbicularis (approx. 30%) and, at 5%, lowest in C. reinhardtii grown under ambient CO2 concentrations. Finally, evidence for the operation of a CCM in algae and hornworts is considered in terms of the probable role of the chloroplast pyrenoid, as the origins, structure and function of this enigmatic organelle are explored during the evolution of land plants.
Collapse
|
6
|
Fathinejad S, Steiner JM, Reipert S, Marchetti M, Allmaier G, Burey SC, Ohnishi N, Fukuzawa H, Löffelhardt W, Bohnert HJ. A carboxysomal carbon-concentrating mechanism in the cyanelles of the 'coelacanth' of the algal world, Cyanophora paradoxa? PHYSIOLOGIA PLANTARUM 2008; 133:27-32. [PMID: 18248510 DOI: 10.1111/j.1399-3054.2007.01030.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cyanelles are the peculiar plastids of glaucocystophyte algae that retained a peptidoglycan wall from the ancestral cyanobacterial endosymbiont. All cyanobacteria and most algae possess an inorganic carbon-concentrating mechanism (CCM) that involves a microcompartment--carboxysomes in prokaryotes and pyrenoids in eukaryotes--harboring the bulk of cellular (plastidic) Rubisco. In the case of the living fossil, Cyanophora paradoxa, the existence of a CCM was a matter of debate. Microarray data revealing 142 CO(2)-responsive genes (induced or repressed through a shift from high to low CO(2) conditions), gas exchange measurements and measurements of photosynthetic affinity provided strong support for a CCM. We favor a recent hypothesis that glaucocystophyte cyanelles as the closest cousins to cyanobacteria among plastids contain 'eukaryotic carboxysomes': bicarbonate enrichment within cyanelles should be considerably higher than in chloroplasts with their pyrenoid-based CCM. Thus, the stress-bearing function of the peptidoglycan layer, the other unique heritage, would be indispensable. An isolation method for cyanelle 'carboxysomes' was developed and the protein components other than Rubisco analyzed by MS. Rubisco activase was identified and corroborated by western blotting. The well-established cyanelle in vitro import system allows to use them as 'honorary cyanobacteria': assembly processes of supramolecular structures as phycobilisomes and carboxysomes thus can be studied after import of nucleus-encoded precursor proteins and subsequent fractionation. Even minor components can easily be tracked and a surprisingly dynamic view is obtained. Labeled pre-activase was imported into isolated cyanelles and 30% of the mature protein was found to be incorporated into the carboxysome fraction. A final decision between carboxysome or pyrenoid must await the identification of cyanelle carbonic anhydrase and, especially, the demonstration of shell proteins.
Collapse
Affiliation(s)
- Sara Fathinejad
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Biochemistry, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brown LS, Jung KH. Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 2006; 5:538-46. [PMID: 16761082 DOI: 10.1039/b514537f] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereotypical image of a retinal-binding proton pump derived from extensive studies of halobacterial ion-transporting and sensory rhodopsins is a fast-cycling protein which possesses two strategically placed carboxylic acids serving as proton donor and acceptor for the retinal Schiff base. We review recent biophysical and bioinformatic data on the novel eubacterial and eucaryotic rhodopsins to analyze the extent of conservation of the haloarchaeal mechanism of transmembrane proton transport. We show that only the most essential elements of the haloarchaeal proton-pumping machinery are conserved universally, and that a mere presence of these elements in primary structures does not guarantee the proton-pumping ability.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | |
Collapse
|
8
|
Steiner JM, Yusa F, Pompe JA, Löffelhardt W. Homologous protein import machineries in chloroplasts and cyanelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:646-52. [PMID: 16262713 DOI: 10.1111/j.1365-313x.2005.02559.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria, especially in the presence of a peptidoglycan wall between the inner and outer envelope membranes. However, it is now clear that cyanelles are in fact primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario, cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high gene content of rhodoplasts and the peptidoglycan wall of cyanelles. This means that the import apparatuses of all primary plastids, i.e. those from glaucocystophytes, red algae, green algae and higher plants, should be homologous. If this is the case, then transit sequences should be similar and heterologous import experiments feasible. Thus far, heterologous in vitro import has been shown in one direction only: precursors from C. paradoxa were imported into isolated pea or spinach chloroplasts. Cyanelle transit sequences differ from chloroplast stroma targeting peptides in containing in their N-terminal domain an invariant phenylalanine residue which is shown here to be crucial for import. In addition, we now demonstrate that heterologous precursors are readily imported into isolated cyanelles, provided that the essential phenylalanine residue is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor/channel showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved, explaining the efficient heterologous import of native precursors from C. paradoxa.
Collapse
Affiliation(s)
- Jürgen M Steiner
- Max F. Perutz Laboratories, University Departments at the Vienna BioCenter, Department of Biochemistry and Ludwig Boltzmann Research Unit for Biochemistry, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | |
Collapse
|