1
|
Feng Y, Liu D, Liu Y, Yang X, Zhang M, Wei F, Li D, Hu Y, Guo Y. Host-genotype-dependent cecal microbes are linked to breast muscle metabolites in Chinese chickens. iScience 2022; 25:104469. [PMID: 35707722 PMCID: PMC9189123 DOI: 10.1016/j.isci.2022.104469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/08/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
In chickens, the effect of host genetics on the gut microbiota is not fully understood, and the extent to which the heritable gut microbes affect chicken metabolism and physiology is still an open question. Here, we explored the interactions among chicken genetics, the cecal microbiota and metabolites in breast muscle from ten chicken breeds in China. We found that different chicken breeds displayed distinct cecal microbial community structures and functions, and 15 amplicon sequence variants (ASVs) were significantly associated with host genetics through different genetic loci, such as those related to the intestinal barrier function. We identified five heritable ASVs significantly associated with 53 chicken muscle metabolites, among which the Megamonas probably affected lipid metabolism through the production of propionate. Our study revealed that the chicken genetically associated cecal microbes may have the potential to affect the bird’s physiology and metabolism. The cecal microbiota are different among ten chicken breeds The chicken genetics influences the cecal microbiota structures and functions The chicken heritable cecal microbes are associated with muscle metabolites Megamonas may affect lipid metabolism by the production of propionate
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
- Corresponding author
| |
Collapse
|
2
|
Cekic C. Modulation of myeloid cells by adenosine signaling. Curr Opin Pharmacol 2020; 53:134-145. [PMID: 33022543 DOI: 10.1016/j.coph.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia, metabolic activity, cell death and immune responses influence the adenosine concentrations in the extracellular space. Cellular responses to hypoxia and inflammation in myeloid cells promote activation of adenosine sensing circuit, which involves increased expression of ectoenzymes that converts phospho-nucleotides such as ATP to adenosine and increased expression of G protein-coupled adenosine receptors. Adenosine sensing circuitry also involves feedforward signaling, which leads to increased expression of hypoxia-inducible factor 1-alpha (HIF1 and feedback signaling, which leads to the suppression of inflammatory transcription factor, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. In this review we will discuss how different subsets of myeloid cells sense adenosine accumulation and how adenosine sensing by myeloid cells influence progression of different immune-related conditions including cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Bilkent University, Department of Molecular Biology and Genetics, Ankara, Turkey; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
3
|
Sedoheptulose-1,7-bisphospate Accumulation and Metabolic Anomalies in Hepatoma Cells Exposed to Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5913635. [PMID: 30755786 PMCID: PMC6348915 DOI: 10.1155/2019/5913635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023]
Abstract
We have previously shown that GSH depletion alters global metabolism of cells. In the present study, we applied a metabolomic approach for studying the early changes in metabolism in hydrogen peroxide- (H2O2-) treated hepatoma cells which were destined to die. Levels of fructose 1,6-bisphosphate and an unusual metabolite, sedoheptulose 1,7-bisphosphate (S-1,7-BP), were elevated in hepatoma Hep G2 cells. Deficiency in G6PD activity significantly reduced S-1,7-BP formation, suggesting that S-1,7-BP is formed in the pentose phosphate pathway as a response to oxidative stress. Additionally, H2O2 treatment significantly increased the level of nicotinamide adenine dinucleotide phosphate (NADP+) and reduced the levels of ATP and NAD+. Severe depletion of ATP and NAD+ in H2O2-treated Hep G2 cells was associated with cell death. Inhibition of PARP-mediated NAD+ depletion partially protected cells from death. Comparison of metabolite profiles of G6PD-deficient cells and their normal counterparts revealed that changes in GSH and GSSG per se do not cause cell death. These findings suggest that the failure of hepatoma cells to maintain energy metabolism in the midst of oxidative stress may cause cell death.
Collapse
|
4
|
Sun Y, Li W. Activity-guided isolation and structural identification of immunomodulating substances from Pleurotus eryngii byproducts. Int Immunopharmacol 2017; 51:82-90. [DOI: 10.1016/j.intimp.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/26/2022]
|
5
|
Abstract
The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis.
Collapse
|
6
|
Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome. Sci Rep 2016; 6:33614. [PMID: 27647162 PMCID: PMC5028892 DOI: 10.1038/srep33614] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit–AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils’ fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils’ survival during inflammation.
Collapse
|
7
|
Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach. Mol Immunol 2016; 75:188-99. [PMID: 27318565 DOI: 10.1016/j.molimm.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination.
Collapse
|