1
|
Wu JX, He Q, Zhou Y, Xu JY, Zhang Z, Chen CL, Wu YH, Chen Y, Qin LQ, Li YH. Protective effect and mechanism of lactoferrin combined with hypoxia against high-fat diet induced obesity and non-alcoholic fatty liver disease in mice. Int J Biol Macromol 2023; 227:839-850. [PMID: 36563804 DOI: 10.1016/j.ijbiomac.2022.12.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Obesity is a global epidemic, it can induce glucose and lipid metabolism disorder and non-alcoholic fatty liver disease (NAFLD). This study explored a new way to control weight and improve fatty liver, namely, living in hypoxia environment and supplement with lactoferrin (Lf). Sixty male C57BL/6J mice were divided into six groups, namely, control, hypoxia, high-fat diet, hypoxia + high-fat diet, hypoxia + high-fat diet + low dose Lf intervention, and hypoxia + high-fat diet + high-dose Lf intervention. Mice in the hypoxia treatment groups were treated with approximately 11.5 % oxygen for 6 h every day for 8 weeks. Results showed that interventions combining Lf and hypoxia treatments showed better effect against obesity and NAFLD than hypoxia treatment alone. The interventions controlled weight gain in mice, improved glucolipid metabolism in mice. The combination intervention reduced cholesterol absorption by reducing the level of hydrophobic bile acids, and elevating the level of hydrophilic bile acids. Gut microbiota analysis revealed that the combination intervention considerably elevated short chain fatty acids (SCFAs)-producing bacteria level, and reduced the Desulfovibrionaceae_unclassified level. Thus, Lf combined with hypoxia intervention effectively prevents obesity and NAFLD by restoring gut microbiota composition and bile acid profile.
Collapse
Affiliation(s)
- Jiang-Xue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Zheng Zhang
- Center of Child Health Management, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cai-Long Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China; Center of Child Health Management, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Hsuan Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China
| | - Yun Chen
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China.
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical college of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Nadeem A, Kumar S. Comment on "dairy protein intake is inversely related to development of non-alcoholic fatty liver disease". Clin Nutr 2022; 41:1459-1460. [PMID: 35501210 DOI: 10.1016/j.clnu.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan.
| | - Satesh Kumar
- Shaheed Mohtarma Benazir Bhutto Medical College Liyari, Karachi, Pakistan.
| |
Collapse
|
3
|
Guo C, Xue H, Guo T, Zhang W, Xuan WQ, Ren YT, Wang D, Chen YH, Meng YH, Gao HL, Zhao P. Recombinant human lactoferrin attenuates the progression of hepatosteatosis and hepatocellular death by regulating iron and lipid homeostasis in ob/ob mice. Food Funct 2020; 11:7183-7196. [PMID: 32756704 DOI: 10.1039/d0fo00910e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf), an iron-binding glycoprotein, has been shown to possess antioxidant and anti-inflammatory properties and exert modulatory effects on lipid homeostasis and non-alcoholic fatty liver disease (NAFLD), but our understanding of its regulatory mechanisms is limited and inconsistent. We used leptin-deficient (ob/ob) mice as the rodent model of NAFLD, and administered recombinant human Lf (4 mg per kg body weight) or control vehicle by intraperitoneal injection to evaluate the hepatoprotective effects of Lf. After 40 days of treatment with Lf, insulin sensitivity and hepatic steatosis in ob/ob mice were significantly improved with the down-regulation of sterol regulatory element binding protein-2 (SREBP2), indicating an improvement in hepatic lipid metabolism and function. We further explored the mechanism, and found that Lf may increase the hepatocellular iron output by targeting the hepcidin-ferroportin (FPn) axis, and then maintains the liver oxidative balance through a nonenzymatic antioxidant system, ultimately suppressing the death of hepatocytes. In addition, the cytoprotective role of Lf may be associated with the inhibition of endoplasmic reticulum (ER) stress and inflammation, promotion of autophagy of damaged hepatocytes and induction of up-regulation of hypoxia inducible factor-1α/vascular endothelial growth factor (HIF-lα/VEGF) to facilitate liver function recovery. These findings suggest that recombinant human Lf might be a potential therapeutic agent for mitigating or delaying the pathological process of NAFLD.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Hunnan District, Shenyang, 110169, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li HY, Li P, Yang HG, Wang YZ, Huang GX, Wang JQ, Zheng N. Investigation and comparison of the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin in A549, HT29, HepG2, and MDA231-LM2 tumor models. J Dairy Sci 2019; 102:9586-9597. [PMID: 31447140 DOI: 10.3168/jds.2019-16429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/23/2019] [Indexed: 12/27/2022]
Abstract
To investigate the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin, 4 types of human tumor cells (lung tumor cell A549, intestinal epithelial tumor cell HT29, hepatocellular cell HepG2, and breast cancer cell MDA231-LM2) were exposed to 3 proteins, respectively. The effects on cell proliferation, migration, and apoptosis were detected in vitro, and nude mice bearing tumors were administered the 3 proteins in vivo. Results showed that the 3 proteins (20 g/L) inhibited viability and migration, as well as induced apoptosis, in 4 tumor cells to different degrees (compared with the control). In vivo, tumor weights in the HT29 group (0.84 ± 0.22 g vs. control 2.05 ± 0.49 g) and MDA231-LM2 group (1.11 ± 0.25 g vs. control 2.49 ± 0.57 g) were significantly reduced by lactoferrin; tumor weights in the A549 group (1.07 ± 0.19 g vs. control 3.11 ± 0.73 g) and HepG2 group (2.32 ± 0.46 g vs. control 3.50 ± 0.74 g) were significantly reduced by α-lactalbumin. Moreover, the roles of lactoferrin, α-lactalbumin, and β-lactoglobulin in regulating apoptotic proteins were validated. In summary, lactoferrin, α-lactalbumin, and β-lactoglobulin were proven to inhibit growth and development of A549, HT29, HepG2, and MDA231-LM2 tumors to different degrees via induction of cell apoptosis.
Collapse
Affiliation(s)
- H Y Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - P Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - H G Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Y Z Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - G X Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - J Q Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - N Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
5
|
Mohamed WA, Salama RM, Schaalan MF. A pilot study on the effect of lactoferrin on Alzheimer's disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed Pharmacother 2019; 111:714-723. [PMID: 30611996 DOI: 10.1016/j.biopha.2018.12.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in which the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (PKB or Akt) pathway is deregulated in response to phosphatase and tensin homolog (PTEN) overexpression. Lactoferrin (LF), a multifunctional iron-binding glycoprotein, is involved in AD pathology; however, direct evidence of its impact upon AD remains unclear. To elucidate LF's role in AD, the possible protective mechanism post-LF administration for 3 months was investigated in AD patients by observing changes in the p-Akt/PTEN pathway. AD patients showed decreased serum acetylcholine (ACh), serotonin (5-HT), antioxidant and anti-inflammatory markers, and decreased expression of Akt in peripheral blood lymphocytes (PBL), as well as PI3K, and p-Akt levels in PBL lysate; all these parameters were significantly improved after daily LF administration for 3 months. Similarly, elevated serum amyloid β (Aβ) 42, cholesterol, oxidative stress markers, IL-6, heat shock protein (HSP) 90, caspase-3, and p-tau, as well as increased expression of tau, MAPK1 and PTEN in AD patients, were significantly reduced upon LF intake. Improvement in the aforementioned AD surrogate markers post-LF treatment was reflected in enhanced cognitive function assessed by the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale 11-item (ADAS-COG 11) questionnaires as clinical endpoints. These results provide a basis for a possible protective mechanism of LF in AD through its ability to alleviate the AD pathological cascade and cognitive decline via modulation of the p-Akt/PTEN pathway, which affects the key players of inflammation and oxidative stress that are involved in AD pathology.
Collapse
Affiliation(s)
| | - Rania M Salama
- Pharmacology and Toxicology Department, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Mona F Schaalan
- Pharmacy Practice and Clinical Pharmacy Department, Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
6
|
Erythropoietin and Nrf2: key factors in the neuroprotection provided by apo-lactoferrin. Biometals 2018; 31:425-443. [PMID: 29748743 DOI: 10.1007/s10534-018-0111-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
Among the properties of lactoferrin (LF) are bactericidal, antianemic, immunomodulatory, antitumour, antiphlogistic effects. Previously we demonstrated its capacity to stabilize in vivo HIF-1-alpha and HIF-2-alpha, which are redox-sensitive multiaimed transcription factors. Various tissues of animals receiving recombinant human LF (rhLF) responded by expressing the HIF-1-alpha target genes, hence such proteins as erythropoietin (EPO), ceruloplasmin, etc. were synthesized in noticeable amounts. Among organs in which EPO synthesis occurred were brain, heart, spleen, liver, kidneys and lungs. Other researchers showed that EPO can act as a protectant against severe brain injury and status epilepticus in rats. Therefore, we tried rhLF as a protector against the severe neurologic disorders developed in rats, such as the rotenone-induced model of Parkinson's disease and experimental autoimmune encephalomyelitis as a model of multiple sclerosis, and observed its capacity to mitigate the grave symptoms. Moreover, an intraperitoneal injection of rhLF into mice 1 h after occlusion of the medial cerebral artery significantly diminished the necrosis area measured on the third day in the ischaemic brain. During this period EPO was synthesized in various murine tissues. It was known that EPO induces nuclear translocation of Nrf2, which, like HIF-1-alpha, is a transcription factor. In view that under conditions of hypoxia both factors demonstrate a synergistic protective effect, we suggested that LF activates the Keap1/Nrf2 signaling pathway, an important link in proliferation and differentiation of normal and malignant cells. J774 macrophages were cultured for 3 days without or in the presence of ferric and ferrous ions (RPMI-1640 and DMEM/F12, respectively). Then cells were incubated with rhLF or Deferiprone. Confocal microscopy revealed nuclear translocation of Nrf2 (the key event in Keap1/Nrf2 signaling) induced by apo-rhLF (iron-free, RPMI-1640). The reference compound Deferiprone (iron chelator) had the similar effect. Upon iron binding (in DMEM/F12) rhLF did not activate the Keap1/Nrf2 pathway. Added to J774, apo-rhLF enhanced transcription of Nrf2-dependent genes coding for glutathione S-transferase P and heme oxygenase-1. Western blotting revealed presence of Nrf2 in mice brain after 6 days of oral administration of apo-rhLF, but not Fe-rhLF or equivalent amount of PBS. Hence, apo-LF, but not holo-LF, induces the translocation of Nrf2 from cytoplasm to the nucleus, probably due to its capacity to induce EPO synthesis.
Collapse
|
7
|
Xiong L, Ren F, Lv J, Zhang H, Guo H. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice. Food Funct 2018; 9:4328-4339. [DOI: 10.1039/c8fo00317c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin was reported to exert modulatory effects on lipid metabolism, but the regulatory mechanisms remain unclear.
Collapse
Affiliation(s)
- Ling Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiayi Lv
- Key Laboratory of Functional Dairy
- Co-constructed by the Ministry of Education and Beijing Government
- China Agricultural University
- Beijing 100083
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
8
|
Rudnichenko YA, Lukashevich VS, Zalutsky IV. [Experimental study of the influence of recombinant human lactoferrin on the levels of androgens and basic parameters of lipid and protein metabolism]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:566-571. [PMID: 27797332 DOI: 10.18097/pbmc20166205566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
System administration of human recombinant lactoferrin per os to rats for 2,5 months increased serum and testicular levels of total testosterone. The data correlated with the increase in free testosterone levels. These changes were accompanied by an increase of concentrations of steroidogenesis substrates (cholesterol, progesterone, and 17-OH progesterone) and a decrease of the estradiol content in blood serum. This resulted in the 3.6-3.8-fold increase of the testosterone/estradiol index. Basic parameters of lipid and protein were also studied. Results of this study suggest that lactoferrin administration causes activation of androgen synthesis and lipid metabolism.
Collapse
Affiliation(s)
- Yu A Rudnichenko
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - V S Lukashevich
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - I V Zalutsky
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
9
|
Nakamura K, Morishita S, Ono T, Murakoshi M, Sugiyama K, Kato H, Ikeda I, Nishino H. Lactoferrin interacts with bile acids and increases fecal cholesterol excretion in rats. Biochem Cell Biol 2017; 95:142-147. [DOI: 10.1139/bcb-2016-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional cationic protein (pI 8.2–8.9) in mammalian milk. We previously reported that enteric-LF prevented hypercholesterolemia and atherosclerosis in a diet-induced atherosclerosis model using Microminipig, although the underlying mechanisms remain unclear. Because LF is assumed to electrostatically interact with bile acids to inhibit intestinal cholesterol absorption, LF could promote cholesterol excretion. In this study, we assessed the interaction between LF and taurocholate in vitro, and the effect of LF on cholesterol excretion in rats. The binding rate of taurocholate to LF was significantly higher than that to transferrin (pI 5.2–6.3). When rats were administered a high-cholesterol diet (HCD) containing 5% LF, LF was detected using ELISA in the upper small intestine from 7.5 to 60 min after the administration. Rats were fed one of the following diets: control, HCD, or HCD + 5% LF for 21 days. Fecal neutral steroids and hepatic cholesterol levels in the HCD group were significantly higher than those in the control group. The addition of LF to a HCD significantly increased fecal neutral steroids levels (22% increase, p < 0.05) and reduced hepatic cholesterol levels (17% decrease, p < 0.05). These parameters were inversely correlated (R = −0.63, p < 0.05). These results suggest that LF promotes cholesterol excretion via interactions with bile acids.
Collapse
Affiliation(s)
- Kanae Nakamura
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
| | - Satoru Morishita
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- “Food for Life”, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoji Ono
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Advanced Medical Research Center, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, 100 Tajima, Odawara, Kanagawa 256-0811, Japan
- Research Organization of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hisanori Kato
- “Food for Life”, Organization for Interdisciplinary Research Projects, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuo Ikeda
- Laboratory of Food and Biomolecular Science, Department of Food Function and Health, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | - Hoyoku Nishino
- Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyou-ku, Kyoto 602-0841, Japan
| |
Collapse
|