1
|
Feng R, Zhu L, Teng F, Wang M, Chen S, Song Z, Li H. Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surf B Biointerfaces 2022; 216:112559. [PMID: 35576880 DOI: 10.1016/j.colsurfb.2022.112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule which selectively recognizes sialic acid (SA) overexpressed in tumors. In the study, PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) by one-step reaction to form amphiphilic polymer for doxorubicin encapsulation. Two drug-carrying micelles with different mass ratio of polymer to drug were prepared by dialysis method to study effect of PBA on doxorubicin release, tumor-targeting and antitumor activity. The study results showed that doxorubicin release from the formulations was acid-sensitive and affected by the polymer dosage, and its acid-induced release behavior improved its insertion into DNA base pairs. Formulation with high polymer dosage showed better tumor targeting and antitumor activity, and activity of inhibiting HepG2 with higher content of SA-containing glycosphingolipids was higher than that of anti-B16. In vivo studies on the activity of B16-bearing mice showed that the doxorubicin-loaded micelles could inhibit the tumor growth and were safer than free doxorubicin. Thus, the PBA-modified nano-polymer micelles have potential biomedical applications due to their nanostructure and tumor-targeting ability.
Collapse
Affiliation(s)
- Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Fangfang Teng
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Min Wang
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
2
|
Xu Y, Sun J, Yang L, Zhao S, Liu X, Su Y, Zhang J, Zhao M. Gangliosides play important roles in the nervous system by regulating ion concentrations. Neurochem Res 2022; 47:1791-1798. [PMID: 35426597 DOI: 10.1007/s11064-022-03576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
Abstract
Gangliosides are important components of the neuronal cell membrane and play a vital role in the development of neurons and the brain. They participate in neurotransmission and are considered as the structural basis of learning and memory. Gangliosides participate in several and important physiological processes, such as cell differentiation, cell signaling, neuroprotection, nerve regeneration and apoptosis. The stability of ion concentration in excitable cells is particularly important in the maintenance of a steady state of cells and in the regulation of physiological functions. Ion concentration has been found to be related to the ganglioside's regulation in many neurological diseases, and several studies have found that they can stabilize intracellular ion concentration by regulating ion channels, which highlights their important regulatory role in neuronal excitability and synaptic transmission. Gangliosides can influence some forms of ion transport, by directly binding to ion transporters or through indirect binding and activation of transport proteins via appropriate signaling pathways. Therefore, the important and special role of gangliosides in the homeostasis of ion concentration is becoming a hot topic in the field and a theoretical basis in promoting help gangliosides use as key drugs for the treatment of nervous system diseases.
Collapse
Affiliation(s)
- Yijia Xu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China
| | - Jianfang Sun
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China
| | - Liying Yang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China
| | - Shangfeng Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China
| | - Xin Liu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China
| | - Yang Su
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, PR China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Mingyi Zhao
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China.
| |
Collapse
|
3
|
Chakraberty R, Reiz B, Cairo CW. Profiling of glycosphingolipids with SCDase digestion and HPLC-FLD-MS. Anal Biochem 2021; 631:114361. [PMID: 34478702 DOI: 10.1016/j.ab.2021.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Lipid components of cells and tissues feature a large diversity of structures that present a challenging problem for molecular analysis. Glycolipids from mammalian cells contain glycosphingolipids (GSLs) as their major glycolipid component, and these structures vary in the identity of the glycan headgroup as well as the structure of the fatty acid and sphingosine (Sph) tails. Analysis of intact GSLs is challenging due to the low abundance of these species. Here, we develop a new strategy for the analysis of lyso-GSL (l-GSL), GSL that retain linkage of the glycan headgroup with the Sph base. The analysis begins with digestion of a GSL sample with sphingolipid ceramide N-deacylase (SCDase), followed by labelling with an amine-reactive fluorophore. The sample was then analyzed by HPLC-FLD-MS and quantitated by addition of an external standard. This method was compared to analysis of GSL glycans after cleavage by an Endoglycoceramidase (EGCase) enzyme and labeling with a fluorophore (2-anthranilic acid, 2AA). The two methods are complementary, with EGCase providing improved signal (due to fewer species) and SCDase providing analysis of lyso-GSL. Importantly the SCDase method provides Sph composition of GSL species. We demonstrate the method on cultured human cells (Jurkat T cells) and tissue homogenate (porcine brain).
Collapse
Affiliation(s)
- Radhika Chakraberty
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Bela Reiz
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|