1
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
2
|
Li S, Li H, Xu X, Saw PE, Zhang L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics 2020; 10:1262-1280. [PMID: 31938064 PMCID: PMC6956819 DOI: 10.7150/thno.38834] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Liver is the principal detoxifying organ and metabolizes various compounds that produce free radicals (FR) constantly. To maintain the oxidative/antioxidative balance in the liver, antioxidants would scavenge FR by preventing tissue damage through FR formation, scavenging, or by enhancing their decomposition. The disruption of this balance therefore leads to oxidative stress and in turn leads to the onset of various diseases. Supplying the liver with exogeneous antioxidants is an effective way to recreate the oxidative/antioxidative balance in the liver homeostasis. Nevertheless, due to the short half-life and instability of antioxidants in circulation, the methodology for delivering antioxidants to the liver needs to be improved. Nanocarrier mediated delivery of antioxidants proved to be an ingenious way to safely and efficiently deliver a high payload of antioxidants into the liver for circumventing liver diseases. The objective of this review is to provide an overview of the role of reactive oxygen species (oxidant) and ROS scavengers (antioxidant) in liver diseases. Subsequently, current nanocarrier mediated antioxidant delivery methods for liver diseases are discussed.
Collapse
Affiliation(s)
- Senlin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Huiru Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
3
|
Tokuhara CK, Santesso MR, Oliveira GSND, Ventura TMDS, Doyama JT, Zambuzzi WF, Oliveira RCD. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. J Appl Oral Sci 2019; 27:e20180596. [PMID: 31508793 DOI: 10.1590/1678-7757-2018-0596] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/22/2023] Open
Abstract
Bone development and healing processes involve a complex cascade of biological events requiring well-orchestrated synergism with bone cells, growth factors, and other trophic signaling molecules and cellular structures. Beyond health processes, MMPs play several key roles in the installation of heart and blood vessel related diseases and cancer, ranging from accelerating metastatic cells to ectopic vascular mineralization by smooth muscle cells in complementary manner. The tissue inhibitors of MMPs (TIMPs) have an important role in controlling proteolysis. Paired with the post-transcriptional efficiency of specific miRNAs, they modulate MMP performance. If druggable, these molecules are suggested to be a platform for development of "smart" medications and further clinical trials. Thus, considering the pleiotropic effect of MMPs on mammals, the purpose of this review is to update the role of those multifaceted proteases in mineralized tissues in health, such as bone, and pathophysiological disorders, such as ectopic vascular calcification and cancer.
Collapse
Affiliation(s)
- Cintia Kazuko Tokuhara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Mariana Rodrigues Santesso
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Gabriela Silva Neubern de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Talita Mendes da Silva Ventura
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| | - Julio Toshimi Doyama
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Willian Fernando Zambuzzi
- Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Botucatu, Rubião Jr, São Paulo, Brasil
| | - Rodrigo Cardoso de Oliveira
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Bauru, São Paulo, Brasil
| |
Collapse
|
4
|
Li T, Yi T, Zhao J, Zhao X, He X. Combined Proinflammatory Biomarkers Have Better Predictive Value for Term Labor than Single Markers. Med Sci Monit 2019; 25:4513-4520. [PMID: 31206507 PMCID: PMC6592143 DOI: 10.12659/msm.917298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The timing of parturition is an important determinant of labor and delivery care. Early parturition is associated with increased neonatal morbidity and mortality. Most existing studies analyzed a single factor for the initiation of parturition, and the role of multiple factors in initiating parturition has not been comprehensively analyzed. MATERIAL AND METHODS We measured the levels of proinflammatory mediators, hypoxia factor, matrix metalloproteinases, hormones, and oxytocin, as well as fetal umbilical blood flow, before and after labor, and their associations with parturition. We also built a statistical model to predict the timing of parturition based on the measurement data. RESULTS IL-1ß, IL-6, TNF-alpha, MMP-9, and HIF-1alpha concentrations significantly increased from full term to labor. The PRL level significantly decreased from full term to parturition. There was no significant change in MCP-1, E3, and OT concentrations from full term to parturition. IL-1ß, IL-6, TNF-alpha, and MMP-9 concentrations were negatively correlated with the initiation of parturition. There was a small but nonsignificant increase in umbilical venous blood flow before parturition. Multiple factors showed a close correlation with the initiation of parturition, and area under the curve analysis showed that a multiple factor model was superior to single factors in the establishment of a model to predict initiation of parturition; however, these results need further confirmation. CONCLUSIONS Combined proinflammatory biomarkers have better predictive value for term labor than single biomarkers.
Collapse
Affiliation(s)
- Tao Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children, Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Tao Yi
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children, Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Jitong Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children, Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children, Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| | - Xiang He
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children, Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
5
|
Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine 2017; 12:2957-2978. [PMID: 28442906 PMCID: PMC5396976 DOI: 10.2147/ijn.s127683] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.
Collapse
Affiliation(s)
- Hossein Jahangirian
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Roshanak Rafiee-Moghaddam
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor
| | - Yadollah Abdollahi
- Department of Electrical Engineering, Faculty of Engineering, University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|