1
|
Wu YR, Xiong W, Dong YJ, Chen X, Zhong YY, He XL, Wang YJ, Lin QF, Tian XF, Zhou Q. Chemical Constituents and Pharmacological Properties of Frankincense: Implications for Anticancer Therapy. Chin J Integr Med 2024; 30:759-767. [PMID: 38816637 DOI: 10.1007/s11655-024-4105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 06/01/2024]
Abstract
The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.
Collapse
Affiliation(s)
- Yong-Rong Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Xiong
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Ying-Jing Dong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin Chen
- College of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuan-Yuan Zhong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin-Ling He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yu-Jia Wang
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qun-Fang Lin
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Xue-Fei Tian
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Changsha, 410208, China
| | - Qing Zhou
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China.
- Hunan Sexual and Reproductive Health Clinical Medical Research Center of Traditional Chinese Medicine, Changsha, 410021, China.
| |
Collapse
|
2
|
Thabet NM, Abdel-Rafei MK, Moustafa EM. Boswellic acid protects against Bisphenol-A and gamma radiation induced hepatic steatosis and cardiac remodelling in rats: role of hepatic PPAR-α/P38 and cardiac Calcineurin-A/NFATc1/P38 pathways. Arch Physiol Biochem 2022; 128:767-785. [PMID: 32057248 DOI: 10.1080/13813455.2020.1727526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bisphenol-A (BPA) and gamma-radiation are two risky environmental pollutants that human beings are exposed to in everyday life and consequently they threaten human health via inducing oxidative stress, inflammation, and eventually tissue damage. This study aims at appraising the protective effect of Boswellic Acid (BA) (250 mg/kg/day, orally) administration on BPA (150 mg/kg/day, i.p) and γ-irradiation (IR) (3 Gy/week for 4 weeks up to cumulative dose of 12 Gy/experimental course) for 4 weeks-induced damage to liver and heart tissues of rats. The present results indicated a significant improvement against damage induced by BPA and IR revealed in biochemical investigations (hepatic PPAR-α/P38 and cardiac ET-1/Calcineurin-A/NFATc1/P38) and histopathological examination of liver and heart. It could be concluded that BA possesses a protective effect against these two deleterious environmental pollutants which attracted major global concerns due to their serious toxicological impact on human health.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Enas M Moustafa
- Radiation Biology Department National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
3
|
El-Salam MA, Samy G, Bastos J, Metwaly H. Novel antitumor activity of the combined treatment of galloylquinic acids from Copaifera lucens and doxorubicin in solid Ehrlich carcinoma-bearing mice via the modulation of the Notch signaling pathway. Life Sci 2022; 299:120497. [PMID: 35339508 DOI: 10.1016/j.lfs.2022.120497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
AIMS This study aims to investigate the potential synergistic effect of the combined treatment of galloylquinic acids compounds from Copaifera lucens with doxorubicin via the modulation of the Notch pathway in Ehrlich carcinoma-bearing mice model. MAIN METHODS The solid tumor model was induced in mice by s.c. injection of Ehrlich cancerous cells in the right hind limb. Sixty mice were allocated into five different groups which included treated groups with galloylquinic acids compounds, doxorubicin and their combination. Normal and tumor control groups were also used. Different biological samples were collected to measure the levels of Notch1, Hes1, Jagged1, TNF-α, IL-6, and VEGF. Histopathological and immunohistochemical examinations of tumor tissues using specific anti-NF-kβ and anti-cyclin D1 antibodies were also performed. KEY FINDINGS Our results showed that the combined treatment of galloylquinic acids compounds with doxorubicin significantly inhibited Notch1, Hes1, Jagged1, TNF-α, IL-6, VEGF, NF-kβ, and cyclin D1 activities. SIGNIFICANCE Galloylquinic acids compounds exhibited promising synergistic chemotherapeutic and oncostatic effects and promoted the chemosensitivity of doxorubicin, mainly by inhibiting the Notch signaling pathway and its downstream effectors. These compounds may be considered in cancer therapy exhibiting improved efficacy and reduced side effects of chemotherapeutic agents.
Collapse
Affiliation(s)
- Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Egypt; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Medicine, Harvard Medical School, Boston, 02115, MA, USA; Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA.
| | - Ghada Samy
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, 11152, Egypt
| | - Jairo Bastos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil
| | - Heba Metwaly
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, 21500 Alexandria, Egypt.
| |
Collapse
|
4
|
Atteia HH, Arafa MH, Mohammad NS, Amin DM, Sakr AT. Thymoquinone upregulates miR-125a-5p, attenuates STAT3 activation, and potentiates doxorubicin antitumor activity in murine solid Ehrlich carcinoma. J Biochem Mol Toxicol 2021; 35:e22924. [PMID: 34605108 DOI: 10.1002/jbt.22924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
In breast cancer, there has been evidence of atypical activation of signal transduction and activators of transcription 3 (STAT3). Thymoquinone (TQ) exerts its anti-neoplastic effect through diverse mechanisms, including STAT3 inhibition. The tumor suppressor, microRNA-125a-5p was reported to be downregulated in various breast cancer cells. Therefore, we investigated the influence of TQ and/or doxorubicin on microRNA-125a-5p and its correlation with STAT3 activation as well as tumor growth in mice bearing solid Ehrlich tumors. We found that TQ markedly suppressed inducible and constitutive phosphorylation of STAT3 in tumor tissue without affecting STAT5. Moreover, it attenuated tumor growth, downregulated STAT3 downstream target proteins, and increased the apoptotic activities of caspase-3 and -9. Interestingly, TQ-elicited synergism of doxorubicin anti-neoplastic activity was coupled with upregulation of tumoral microRNA-125a-5p. Taken together, the current findings raise the potential of TQ as a promising chemomodulatory adjuvant to augment mammary carcinoma sensitivity to doxorubicin.
Collapse
Affiliation(s)
- Hebatallah H Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Manar H Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nanies S Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia M Amin
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amr T Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
5
|
El Bakary NM, Alsharkawy AZ, Shouaib ZA, Barakat EMS. Role of Bee Venom and Melittin on Restraining Angiogenesis and Metastasis in γ-Irradiated Solid Ehrlich Carcinoma-Bearing Mice. Integr Cancer Ther 2021; 19:1534735420944476. [PMID: 32735464 PMCID: PMC7401046 DOI: 10.1177/1534735420944476] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis and apoptosis evasion are common hallmarks of cancer. The present work was an endeavor to evaluate the influence of bee venom (BV) or its major constituent melittin (MEL) as antiapoptotic and angiogenic regulator modifier on the tumor growth and the cell sensitivity to ionizing radiation targeting the improvement of cancer therapeutic protocols. BV (0.56 mg/kg/day) and MEL (500 µg/kg body weight/day) were injected intraperitoneally to mice bearing 1 cm3 solid tumor of Ehrlich ascites carcinoma (EAC) for 21 consecutive days. Mice were whole-body exposed to 1 Gray (Gy) of γ-radiation (2 fractionated doses). Treatment with BV or MEL markedly suppresses the proliferation of tumor in EAC mice. The concentrations of m-RNA for angiogenic factors (TNF-α, VEGF) as well as MMPs 2 and 9 activities and NO concentration were significantly decreased, combined with improvements in apoptotic regulators (caspase-3 activity) and normal cells redox tone (catalase and free radicals content) compared with EAC mice. Moreover, the histopathological investigation confirms the improvement exerted by BV or MEL in the EAC mice group or EAC + R group. Exposure to γ-radiation sustained the modulatory effect of BV on tumor when compared with EAC + BV mice. Convincingly, the role of BV or MEL as a natural antiangiogenic in the biological sequelae after radiation exposure is verified. Hence, BV and its major constituent MEL might represent a potential therapeutic strategy for increasing the radiation response of solid tumors.
Collapse
Affiliation(s)
- Nermeen M El Bakary
- National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | | | | |
Collapse
|
6
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
7
|
Medhat AM, Azab KS, Said MM, El Fatih NM, El Bakary NM. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumour Biol 2017; 39:1010428317728480. [PMID: 29022496 DOI: 10.1177/1010428317728480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.
Collapse
Affiliation(s)
- Amina M Medhat
- 1 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Khaled Sh Azab
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Said
- 1 Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Neama M El Fatih
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M El Bakary
- 2 Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|