1
|
Targeting Tyrosine Kinases in Ovarian Cancer: Small Molecule Inhibitor and Monoclonal Antibody, Where Are We Now? Biomedicines 2022; 10:biomedicines10092113. [PMID: 36140214 PMCID: PMC9495728 DOI: 10.3390/biomedicines10092113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynaecological malignancies worldwide. Despite high success rates following first time treatment, this heterogenous disease is prone to recurrence. Oncogenic activity of receptor tyrosine kinases is believed to drive the progression of ovarian cancer. Here we provide an update on the progress of the therapeutic targeting of receptor tyrosine kinases in ovarian cancer. Broadly, drug classes that inhibit tyrosine kinase/pathways can be classified as small molecule inhibitors, monoclonal antibodies, or immunotherapeutic vaccines. Small molecule inhibitors tested in clinical trials thus far include sorafenib, sunitinib, pazopanib, tivantinib, and erlotinib. Monoclonal antibodies include bevacizumab, cetuximab, pertuzumab, trastuzumab, and seribantumab. While numerous trials have been carried out, the results of monotherapeutic agents have not been satisfactory. For combination with chemotherapy, the monoclonal antibodies appear more effective, though the efficacy is limited by low frequency of target alteration and a lack of useful predictive markers for treatment stratification. There remain critical gaps for the treatment of platinum-resistant ovarian cancers; however, platinum-sensitive tumours may benefit from the combination of tyrosine kinase targeting drugs and PARP inhibitors. Immunotherapeutics such as a peptide B-cell epitope vaccine and plasmid-based DNA vaccine have shown some efficacy both as monotherapeutic agents and in combination therapy, but require further development to validate current findings. In conclusion, the tyrosine kinases remain attractive targets for treating ovarian cancers. Future development will need to consider effective drug combination, frequency of target, and developing predictive biomarker.
Collapse
|
2
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
3
|
Azimian-Zavareh V, Dehghani-Ghobadi Z, Ebrahimi M, Mirzazadeh K, Nazarenko I, Hossein G. Wnt5A modulates integrin expression in a receptor-dependent manner in ovarian cancer cells. Sci Rep 2021; 11:5885. [PMID: 33723319 PMCID: PMC7970989 DOI: 10.1038/s41598-021-85356-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Wnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV-3 and OVCAR-3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates differently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)-2 and -5, were increased in different clones. However ROR-1, -2 expression levels were differently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV-3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR-3-derived clones, while this was decreased in SKOV-3-derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fibronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fibronectin. Accordingly, we observed significantly higher expression levels of ITGAV and ITGB3 in human high-grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD-5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fibronectin attachment.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran.,Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Kian Mirzazadeh
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Ghamartaj Hossein
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran. .,Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
4
|
Lei L, Huang Z, Feng J, Huang Z, Tao Y, Hu X, Zhang X. Loss of receptor tyrosine kinase-like orphan receptor 2 impairs the osteogenesis of mBMSCs by inhibiting signal transducer and activator of transcription 3. Stem Cell Res Ther 2020; 11:137. [PMID: 32216811 PMCID: PMC7098134 DOI: 10.1186/s13287-020-01646-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Receptor tyrosine kinase-like orphan receptor 2 (Ror2) plays a key role in bone formation, but its signaling pathway is not completely understood. Signal transducer and activator of transcription 3 (Stat3) takes part in maintaining bone homeostasis. The aim of this study is to reveal the role and mechanism of Ror2 in the osteogenic differentiation from mouse bone marrow mesenchymal stem cells (mBMSCs) and to explore the effect of Stat3 on Ror2-mediated osteogenesis. Methods Ror2 CKO mice were generated via the Cre-loxp recombination system using Prrx1-Cre transgenic mice. Quantitative real-time PCR and western blot were performed to assess the expression of Stat3 and osteogenic markers in Ror2-knockdown mBMSCs (mBMSC-sh-Ror2). After being incubated in osteogenic induction medium for 3 weeks, Alizarin Red staining and western blot were used to examine the calcium deposit and osteogenic markers in Stat3 overexpression in mBMSC-sh-Ror2. Results Loss of Ror2 in mesenchymal or osteoblast progenitor cells led to a dwarfism phenotype in vivo. The mRNA expression of osteogenic markers (osteocalcin, osteopontin (OPN), and collagen I) in the ulna proximal epiphysis of Ror2 CKO mice was significantly decreased (P < 0.05). The mRNA and protein expression of Stat3 and osteogenic markers (Runx2, osterix, and OPN) decreased in mBMSC-sh-Ror2 cells (P < 0.05). The overexpression of Stat3 in mBMSC-sh-Ror2 cells rescued the calcium deposit and expression of Runx2, osterix, and OPN to a level comparable to normal mBMSCs. Conclusions Ror2 was essential for skeleton development by regulating mBMSCs’ osteogenesis and osteoblast differentiation. Loss of Ror2 may impair the osteogenesis of mBMSCs by inhibiting Stat3.
Collapse
Affiliation(s)
- Lizhen Lei
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Zhuwei Huang
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Jingyi Feng
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Zijing Huang
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Yiwei Tao
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China.,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Xiaoli Hu
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China. .,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| | - Xiaolei Zhang
- Guangdong Province Key Laboratory of Stomatology, Guangzhou, 510080, Guangdong, China. .,Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
5
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
6
|
Henry CE, Llamosas E, Daniels B, Coopes A, Tang K, Ford CE. ROR1 and ROR2 play distinct and opposing roles in endometrial cancer. Gynecol Oncol 2018; 148:576-584. [PMID: 29395309 DOI: 10.1016/j.ygyno.2018.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In recent years, the Wnt signalling pathway and the ROR1 and ROR2 receptors have been implicated in a range of gynecological cancers. These receptors have been described as prospective therapeutic targets, and this study investigated such potential in an endometrial cancer context. METHOD Immunohistochemistry for ROR1 and ROR2 was performed in a patient cohort, and expression was correlated with clinicopathological parameters including type, stage, grade, myometrial invasion, lymphovascular involvement, patient age and survival. The functional role of these receptors in endometrial cancer was investigated via siRNA knockdown of ROR1 and ROR2 in three cell line models (KLE, RL95-2 and MFE-319). Effects on proliferation, adhesion, migration and invasion were measured. RESULTS High ROR1 expression in patient samples correlated with worse overall survival (p = 0.0169) while high ROR2 expression correlated with better overall survival (p = 0.06). ROR1 knockdown in KLE cells significantly decreased proliferation (p = 0.047) and reduced migration and invasion. ROR2 knockdown in RL95-2 cells increased cell migration and invasion (p = 0.011). Double ROR1 and ROR2 knockdown in MFE-319 cells decreased adhesion and significantly increased cell migration (P = 0.008) and invasion (p < 0.001). CONCLUSION ROR1 and ROR2 play distinct roles in endometrial cancer. ROR1 may promote tumor progression, similar to its role in ovarian cancer, while ROR2 may act as a tumor suppressor in endometrioid endometrial cancer, similar to its role in colorectal cancer. With several ROR-targeting therapies currently in development and phase I clinical trials for other tumor types, this study supports the potential of these receptors as therapeutic targets for women with endometrial cancer.
Collapse
Affiliation(s)
- C E Henry
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia
| | - E Llamosas
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia
| | - B Daniels
- Medicines Policy Research Unit, Centre for Big Data Research in Health, Faculty of Medicine, University of New South Wales, Australia
| | - A Coopes
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia
| | - K Tang
- South Eastern Area Laboratory Services Pathology, Prince of Wales Hospital, Randwick, Australia
| | - C E Ford
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre, School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Australia.
| |
Collapse
|