1
|
Xia X, Xu F, Dai D, Xiong A, Sun R, Ling Y, Qiu L, Wang R, Ding Y, Lin M, Li H, Xie Z. VDR is a potential prognostic biomarker and positively correlated with immune infiltration: a comprehensive pan-cancer analysis with experimental verification. Biosci Rep 2024; 44:BSR20231845. [PMID: 38639057 PMCID: PMC11065647 DOI: 10.1042/bsr20231845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
The vitamin D receptor (VDR) is a transcription factor that mediates a variety of biological functions of 1,25-dihydroxyvitamin D3. Although there is growing evidence of cytological and animal studies supporting the suppressive role of VDR in cancers, the conclusion is still controversial in human cancers and no systematic pan-cancer analysis of VDR is available. We explored the relationships between VDR expression and prognosis, immune infiltration, tumor microenvironment, or gene set enrichment analysis (GSEA) in 33 types of human cancers based on multiple public databases and R software. Meanwhile, the expression and role of VDR were experimentally validated in papillary thyroid cancer (PTC). VDR expression decreased in 8 types and increased in 12 types of cancer compared with normal tissues. Increased expression of VDR was associated with either good or poor prognosis in 13 cancer types. VDR expression was positively correlated with the infiltration of cancer-associated fibroblasts, macrophages, or neutrophils in 20, 12, and 10 cancer types respectively and this correlation was experimentally validated in PTC. Increased VDR expression was associated with increased percentage of stromal or immune components in tumor microenvironment (TME) in 24 cancer types. VDR positively and negatively correlated genes were enriched in immune cell function and energy metabolism pathways, respectively, in the top 9 highly lethal tumors. Additionally, VDR expression was increased in PTC and inhibited cell proliferation and migration. In conclusion, VDR is a potential prognostic biomarker and positively correlated with immune infiltration as well as stromal or immune components in TME in multiple human cancers.
Collapse
MESH Headings
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Humans
- Tumor Microenvironment/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Thyroid Cancer, Papillary/immunology
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Cell Line, Tumor
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/immunology
- Cancer-Associated Fibroblasts/pathology
- Databases, Genetic
Collapse
Affiliation(s)
- Xuedi Xia
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Dexing Dai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - An Xiong
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ruoman Sun
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Yali Ling
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Lei Qiu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Rui Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Ya Ding
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Miaoying Lin
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Haibo Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| | - Zhongjian Xie
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha 410011, Hunan, China
| |
Collapse
|
2
|
Liu T, Jiang L, Bai Q, Wu S, Yu X, Wu T, Wang J, Zhang X, Li H, Zhao K, Wang L. CLDN6 Suppresses Migration and Invasion of MCF-7 and SKBR-3 Breast Cancer Cells by Blocking the SMAD/Snail/MMP-2/9 Axis. Bull Exp Biol Med 2023; 175:376-381. [PMID: 37566248 DOI: 10.1007/s10517-023-05871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 08/12/2023]
Abstract
The study examined the mechanisms of action of signal protein claudin 6 (CLDN6) on migration and invasion of breast cancer cell lines MCF-7 and SKBR-3. To this end, the signal proteins SMAD were blocked with their inhibitor SB431542, the genes CLDN6 and SNAIL were knocked down with short hairpin RNAs, and MMP2 and MMP9 were inhibited with TIMP-1. Expressions of MMP2 and MMP9 mRNAs were evaluated by reverse transcription PCR, Expressions of MMP-2, MMP-9, E-cadherin, N-cadherin, and vimentin were examined by Western blotting. Migration and invasion were analyzed by scratch test and Matrigel invasion assay. SB431542 inhibited expression of MMP2 and MMP9 in both cell lines. Single use of SB431542 inhibited expression of MMP-2/MMP-9 and corresponding mRNAs, but subsequent silencing of CLDN6 gene reversed this effect. TIMP-1 reversed down-regulation of E-cadherin, upregulation of N-cadherin and vimentin, facilitation of migration and invasion evoked by CLDN6 knocking down. Silencing of SNAIL gene inhibited migration and invasion, upregulated the expression of E-cadherin, and down-regulated expression of MMP2, MMP 9, N-cadherin, and vimentin. Thus, CLDN6 suppresses the epithelial-mesenchymal transition, migration, and invasion via blocking SMAD/Snail/MMP-2/9 signaling pathway in MCF-7 and SKBR-3 cancer cell lines.
Collapse
Affiliation(s)
- T Liu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - L Jiang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Q Bai
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - S Wu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - X Yu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - T Wu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - J Wang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - X Zhang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - H Li
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - K Zhao
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - L Wang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China.
| |
Collapse
|
3
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
4
|
Xu Q, Yu B, Chen W, Li W, Sun Y, Fang Y. CircSERPINA3 promoted cell proliferation, migration, and invasion of laryngeal squamous cell carcinoma by targeting miR-885-5p. Cell Biol Int 2022; 46:1852-1863. [PMID: 35971749 DOI: 10.1002/cbin.11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
CircSERPINA3 has been shown to be upregulated in laryngeal squamous cell carcinoma (LSCC); however, whether it regulates the development of LSCC and the specific molecular mechanism remains unclear, which is to be explored in this study. Expressions of circSERPINA3, miR-885-5p, and Malic enzyme 1 (ME1) in LSCC tissues or cell lines were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The regulation of circSERPINA3 on the biological behavior of LSCC cells was confirmed by loss and gain experiments (cell counting kit-8, transwell, and colony formation assay). The correlation between circSERPINA3/ME1 and miR-885-5p was predicted and confirmed by bioinformatics analysis, dual-luciferase reporter assay, and qRT-PCR. The effect of circSERPINA3/miR-885-5p axis on the biological behavior of LSCC cells and expressions of epithelial-mesenchymal transition-related proteins was confirmed by rescue experiments. CircSERPINA3 and ME1 was upregulated in LSCC tissues, whereas miR-885-5p was downregulated. MiR-885-5p was the target gene of circSERPINA3, whereas ME1 was the target gene of miR-885-5p. Silent circSERPINA3 suppressed viability, invasion, migration, colony formation, and expression of ME1, claudin-4, snail, and vimentin but elevated expression of miR-885-5p and E-cadherin, whereas overexpressed circSERPINA3 was the opposite. However, miR-885-5p inhibitor or mimic reversed the effects of silent circSERPINA3 or overexpressed circSERPINA3. Collectively, circSERPINA3 promotes proliferation, migration, and invasion of LSCC cells by targeting miR-885-5p.
Collapse
Affiliation(s)
- Qiushi Xu
- Ear Nose and Throat Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Bing Yu
- Pathology Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Wenjing Chen
- Pathology Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Wenlong Li
- Ear Nose and Throat Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Yuanhao Sun
- Ear Nose and Throat Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Yanchun Fang
- Pathology Department, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| |
Collapse
|
5
|
Silveira DA, Gupta S, Sinigaglia M, Mombach JCM. The Wnt pathway can stabilize hybrid phenotypes in the epithelial-mesenchymal transition: A logical modeling approach. Comput Biol Chem 2022; 99:107714. [PMID: 35763962 DOI: 10.1016/j.compbiolchem.2022.107714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
The Wnt pathway is important to regulate a variety of biochemical functions and can contribute to cancer development through its influence on the epithelial-mesenchymal transition (EMT). Multiple circuits have been reported to participate in the regulation of the Wnt signaling, however, the way these circuits coordinately regulate this signaling is still unclear. Moreover, the mechanisms responsible for the appearance of hybrid phenotypes (cells presenting both E and M features) are not well determined. The hybrid phenotype can present much higher metastatic potential than the mesenchymal phenotype. In this study, we propose a Boolean model of the Wnt pathway signaling contemplating recent published biochemical information on hepatocarcinoma. The model presents good coherence with experimental data for perturbed and wild-type cases. With the model, we propose two new molecular circuits involving several molecules that can stabilize hybrid states during the EMT. Moreover, we found that the two well studied circuits, AKT1/β-catenin and SNAIL1/miR-34, can cooperate with the predicted ones to favor the stabilization of the hybrid states. These findings highlight some possible unrecognized mechanisms during Wnt signaling and may provide alternative therapeutic strategies to control cancer metastatization.
Collapse
Affiliation(s)
- Daner Acunha Silveira
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Shantanu Gupta
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
6
|
Wu H, Wang W, Zhu J. Knockdown of long non-coding RNA RP11-297P16.3 inhibits the migration and invasion of laryngeal squamous carcinoma cells. Clin Transl Oncol 2021; 23:2057-2065. [PMID: 33893613 DOI: 10.1007/s12094-021-02609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Laryngeal cancer has a poor prognosis when progressing to an advanced stage with limited treatment options. Therefore, understanding the underlying mechanisms is important to identify novel treatment targets. Long non-coding RNAs (lncRNAs) have been shown to play oncogenic roles in cancer, including in laryngeal cancer. We previously discovered that the lncRNA RP11-297P16.3 is overexpressed in laryngeal squamous cell carcinoma (LSCC) based on RNA-sequencing data. Therefore, the aim of the present study was to investigate the effects of knockdown of RP11-297P16.3 on the migration and invasion of LSCC cells, and the significance of these effects. METHODS Six methods were employed to assess the function of RP11-297P16.3 including gene silencing, RT-PCR, the 5-Ethynyl-20-deoxyuridine (EdU) staining assay, Scratch wound-healing assay, transwell assay, and Western blot. RESULTS The results show that the expression of RP11-297P16.3 in the si-lncRNA group was significantly decreased compared with those in the BC (blank control) and NC (negative control) groups. Moreover, knockdown of RP11-297P16.3 significantly inhibited the migration and invasion of LSCC cells but had no effect on cell proliferation. The protein expression of N-cadherin and vimentin was notably decreased after RP11-297P16.3 knockdown; whereas, the protein expression of cadherin was significantly increased CONCLUSION: These results suggested that RP11-297P16.3 may inhibit the migration and invasion of LSCC cells by regulating the epithelial-mesenchymal transition process, suggesting that RP11-297P16.3 is a potential new target for treating LSCC.
Collapse
Affiliation(s)
- H Wu
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China
| | - W Wang
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China
| | - J Zhu
- School of Basic Medical Science, Shanxi Medical University, Jinzhong, Shanxi, 030600, P.R. China.
| |
Collapse
|
7
|
Xu D, Su C, Guo L, Yan H, Wang S, Yuan C, Chen G, Pang L, Zhang N. Predictive Significance of Serum MMP-9 in Papillary Thyroid Carcinoma. Open Life Sci 2019; 14:275-287. [PMID: 33817161 PMCID: PMC7874766 DOI: 10.1515/biol-2019-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/22/2019] [Indexed: 01/13/2023] Open
Abstract
Objective The incidence of papillary thyroid carcinoma (PTC) is increasing, and there are no reliable serum biomarkers for the diagnosis and prognosis of PTC. This study aimed to assess whether serum matrix metalloproteinase-9 (MMP-9) could serve as an auxiliary diagnostic/prognostic marker for PTC after total and partial thyroidectomy. Material and Methods Postoperative serum MMP-9 concentrations were measured in 182 male patients with PTC, 86 male patients with benign thyroid nodule (BTN), and 62 male healthy controls (HCs). Multivariate logistic regression and Cox regression were applied to evaluate the correlation between variables. The performance of serum MMP-9 in diagnosing PTC and predicting structural persistent/recurrent disease (SPRD) during 48 months of follow-up after initial surgery was evaluated by receiving operating characteristic curve analysis. Results The median serum MMP-9 concentration in the PTC group (79.45 ng/ml) was significantly higher than those in the BTN group (47.35 ng/ml) and HC group (47.71 ng/ml). The area under the curve (AUC) for predicting PTC from BTN was 0.852 at a cut-off value of 60.59 ng/ml. Serum MMP-9 was negatively correlated with disease-free survival (OR 1.026, P=0.001). Serum MMP-9 exhibited good performance in predicting SPRD at a cutoff value of 99.25 ng/ml with an AUC of 0.818. Advanced TNM stage (OR 31.371, P=0.019) and serum MMP-9 ≥99.25 ng/ml (OR 4.103, P=0.022) were independent risk factors for SPRD. Conclusions Serum MMP-9 potentially represents a good predictive biomarker for PTC diagnosis and prognosis after thyroidectomy in Chinese male patients for whom radio-imaging indicates suspected PTC.
Collapse
Affiliation(s)
- Dahai Xu
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Chang Su
- Department of Thyroid Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Liang Guo
- Department of Pathology, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - He Yan
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Shaokun Wang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
| | - Congwang Yuan
- Department of Pain, Yancheng First People’s Hospital, Yancheng, Jiangsu, 224000, China
| | - Guohui Chen
- Department of Pathology, Jilin City People’s Hospital, Jilin, 132000, China
| | - Li Pang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
- E-mail:
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021,China
- E-mail:
| |
Collapse
|
8
|
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 2019; 303:1557-1572. [PMID: 31168956 DOI: 10.1002/ar.24188] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It is now widely appreciated that members of the matrix metalloproteinase (MMP) family of enzymes play a key role in cancer development and progression along with many of the hallmarks associated with them. The activity of these enzymes has been directly implicated in extracellular matrix remodeling, the processing of growth factors and receptors, the modulation of cell migration, proliferation, and invasion, the epithelial to mesenchymal transition, the regulation of immune responses, and the control of angiogenesis. Certain MMP family members have been validated as biomarkers of a variety of human cancers including those of the breast, brain, pancreas, prostate, ovary, and others. The related metalloproteinases, the A disintegrin and metalloproteinases (ADAMs), share a number of these functions as well. Here, we explore these essential metalloproteinases and some of their disease-associated activities in detail as well as some of their complementary translational potential. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roopali Roy
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Golnaz Morad
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrej Jedinak
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Ni H, Hu S, Chen X, Liu Y, Ni T, Cheng L. Tra2β silencing suppresses cell proliferation in laryngeal squamous cell carcinoma via inhibiting PI3K/AKT signaling. Laryngoscope 2018; 129:E318-E328. [PMID: 30597574 DOI: 10.1002/lary.27716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Hao‐Sheng Ni
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of OtorhinolaryngologyAffiliated Hospital of Nantong University Nantong China
| | - Song‐Qun Hu
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
- Department of OtorhinolaryngologyAffiliated Hospital of Nantong University Nantong China
| | - Xi Chen
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yi‐Fei Liu
- Department of PathologyAffiliated Hospital of Nantong University Nantong China
| | - Ting‐Ting Ni
- Department of OncologyNantong Tumor Hospital Nantong China
| | - Lei Cheng
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
10
|
Fathi N, Ahmadian E, Shahi S, Roshangar L, Khan H, Kouhsoltani M, Maleki Dizaj S, Sharifi S. Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 2018; 109:391-401. [PMID: 30399574 DOI: 10.1016/j.biopha.2018.10.102] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/18/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral cancer is known as one of the most common cancers, with a poor prognosis, related to delayed clinical diagnosis, either due to the lack of particular biomarkers related to the disease or costly therapeutic alternatives. Vitamin D executes its functions by interacting with the vitamin D receptor (VDR), both in healthy and diseased individuals, including oral cancer. This review discusses the role of vitamin D and VDR on tumorigenesis, emphasizing on oral cancer. Furthermore, regulation of VDR expression, mechanisms of anticancer effects of calcitriol, oral cancer chemoresistance and its relation with VDR and polymorphisms of VDR gene will be discussed. The manuscript is prepared mainly using the information collected from PubMed and MEDLINE.
Collapse
Affiliation(s)
- Nazanin Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cells Research Center, Tabriz University of Medical Sciences, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali khan university, Mardan, 23200, Pakistan
| | - Maryam Kouhsoltani
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Peng D, Hu Z, Wei X, Ke X, Shen Y, Zeng X. NT5Einhibition suppresses the growth of sunitinib-resistant cells and EMT course and AKT/GSK-3β signaling pathway in renal cell cancer. IUBMB Life 2018; 71:113-124. [PMID: 30281919 DOI: 10.1002/iub.1942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dan Peng
- Department of Nuclear Medicine; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Zhiquan Hu
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xian Wei
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xinwen Ke
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Yuanqing Shen
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xing Zeng
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| |
Collapse
|
12
|
Marioni G, Cappellesso R, Ottaviano G, Fasanaro E, Marchese-Ragona R, Favaretto N, Giacomelli L, Guzzardo V, Martini A, Fassina A, Blandamura S. Nuclear nonmetastatic protein 23-H1 expression and epithelial-mesenchymal transition in laryngeal carcinoma: A pilot investigation. Head Neck 2018; 40:2020-2028. [DOI: 10.1002/hed.25188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/05/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | - Giancarlo Ottaviano
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Elena Fasanaro
- Department of Radiotherapy; Veneto Institute of Oncology IOV-IRCCS; Padova Italy
| | | | - Niccolò Favaretto
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | | | | | - Alessandro Martini
- Department of Neuroscience DNS, Otolaryngology Section; University of Padova; Padova Italy
| | - Ambrogio Fassina
- Department of Medicine DIMED; University of Padova; Padova Italy
| | | |
Collapse
|