1
|
Zhang YQ, Yuan Y, Zhang J, Lin CY, Guo JL, Liu HS, Guo Q. Evaluation of the roles and regulatory mechanisms of PD-1 target molecules in NSCLC progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1168. [PMID: 34430609 PMCID: PMC8350711 DOI: 10.21037/atm-21-2963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
Background Targeted programmed cell death protein 1 (PD-1) therapy could effectively improve the long-term prognosis of patients with non-small cell lung cancer (NSCLC). The role of PD-1 targets in the progression of NSCLC has not been fully revealed. Methods The differentially expressed genes (DEGs) in patients’ blood after NSCLC treatment with PD-1 blocker nivolumab in the GSE141479 dataset were analyzed by GEO2R and identified in the TCGA database. The mechanism of action involved in the PD-1 target molecules via the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The protein-protein interaction (PPI) network shows the relationship between PD-1 target molecules. The factors affecting the prognosis of NSCLC patients were identified via the COX regression analysis and survival analysis to build the risk model and nomogram. Results There were 64 DEGs in patients’ blood after nivolumab treatment and 48 DEGs in NSCLC tissues. The PD-1 target molecules involved cell proliferation, DNA replication, cell cycle, lung cancer, and other cellular processes. The prognostic factors CCNA2, CHEK1, DLGAP5, E2F8, FOXM1, HIST1H2BH, HJURP, MKI67, PLK1, TPX2, and TYMS, and the independent factors HIST1H2BH and PLK1, influenced the prognosis of NSCLC patients. HIST1H2BH and PLK1 were overexpressed in LUAD and LUSC tissues. The elevated expression levels of HIST1H2BH and PLK1 were related to the overall survival (OS) and the progression-free survival of NSCLC patients. High-risk NSCLC patients had a poor prognosis and were an independent factor influencing the poor prognosis of NSCLC patients. The high-risk model group was enriched with signaling mechanisms such as cell cycle, DNA replication, and homologous recombination. Conclusions The risk model based on PD-1 target molecules was helpful to assess the prognosis of NSCLC patients. HIST1H2BH and PLK1 might become prognostic biomarkers of NSCLC patients.
Collapse
Affiliation(s)
- Yun-Qiang Zhang
- Department of Thoracic Surgery, Beilun District People's Hospital of Ningbo, Ningbo, China
| | - Ye Yuan
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Cheng-Yi Lin
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hua-Song Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Parsyan A, Cruickshank J, Hodgson K, Wakeham D, Pellizzari S, Bhat V, Cescon DW. Anticancer effects of radiation therapy combined with Polo-Like Kinase 4 (PLK4) inhibitor CFI-400945 in triple negative breast cancer. Breast 2021; 58:6-9. [PMID: 33866248 PMCID: PMC8079282 DOI: 10.1016/j.breast.2021.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Development of novel multimodality radiotherapy treatments in metastatic breast cancer, especially in the most aggressive triple negative (TNBC) subtype, is of significant clinical interest. Here we show that a novel inhibitor of Polo-Like Kinase 4 (PLK4), CFI-400945, in combination with radiation, exhibits a synergistic anti-cancer effect in TNBC cell lines and patient-derived organoids in vitro and leads to a significant increase in survival to tumor endpoint in xenograft models in vivo, compared to control or single-agent treatment. Further preclinical and proof-of-concept clinical studies are warranted to characterize molecular mechanisms of action of this combination and its potential applications in clinical practice. PLK4 inhibitor CFI-400945, combined with radiation, shows synergistic antiproliferative activity in immortalized breast cancer cell lines. CFI-400945 in combination with radiation shows synergistic antiproliferative activity in breast cancer patient-derived organoids. In MDA-MB-231 xenograft mice, CFI-400945 sensitizes to radiation and significantly improves survival to the tumour endpoint.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, Ontario, N6A 4V2, Canada; Department of Oncology, Western University, London, Ontario, N6A 5W9, Canada; London Regional Cancer Program, London Health Sciences Centre, Western University, London, Ontario, N6A 5W9, Canada; Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada.
| | - Jennifer Cruickshank
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Drew Wakeham
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| | - Sierra Pellizzari
- Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada
| | - Vasudeva Bhat
- London Regional Cancer Program, London Health Sciences Centre, Western University, London, Ontario, N6A 5W9, Canada; Department of Anatomy and Cell Biology, London Regional Cancer Program, Western University, London, Ontario, N6A 5C1, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada; Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2C1, Canada
| |
Collapse
|
3
|
Zhang L, Chen J, Cheng T, Yang H, Li H, Pan C. Identification of the key genes and characterizations of Tumor Immune Microenvironment in Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). J Cancer 2020; 11:4965-4979. [PMID: 32742444 PMCID: PMC7378909 DOI: 10.7150/jca.42531] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the key genes and immune microenvironment involved in different TNM stages of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). The gene expression and clinical characteristics data were downloaded from the genomic data commons (GDC) database. After initial data processing, the characteristics of the immune microenvironment were analyzed. The differentially expressed genes (DEGs) in tumor vs. normal, and in early vs. advanced stages were screened, followed by Spearman correlation test for tumor infiltrating immune cells (TIICs) to identify immune-related genes. Finally, functional enrichment, protein-protein interaction, and survival analyses were performed. In LUAD, early stage was with higher immune scores, greater number of memory B cells and M0 macrophages compared to advanced stage. M0 and M2 macrophages, and resting memory CD4+ T cells accounted for a large proportion of TIICs in LUAD. The abundance of M0 macrophage infiltration was significantly correlated with the TNM stage and survival. In LUSC, early stage was with higher cytolytic activity and neoantigen burden compared to advanced stage. M0 and M2 macrophages, and plasma cells accounted for a large proportion of TIICs in LUSC. The abundance of resting and activated mast cells was significantly correlated with TNM stage, while resting dendritic cells, eosinophils, activated memory CD4 T cells, and mast cells were significantly correlated with prognosis. Tumor mutation burden analysis revealed that the median of variants per sample decreased from stage I to IV in LUAD, while it increased in LUSC. Further, 83 and 9 immune-related DEGs were identified in LUAD and LUSC, respectively, of which 23 genes in LUAD and 2 genes in LUSC correlated with survival. In conclusion, we identified the key genes, and characterized the tumor immune microenvironment in LUAD and LUSC which may provide therapeutic targets for the treatment of NSCLC.
Collapse
Affiliation(s)
| | - Jianhua Chen
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China, 410013
| | | | | | | | | |
Collapse
|
4
|
Zhu J, Cui K, Cui Y, Ma C, Zhang Z. PLK1 Knockdown Inhibits Cell Proliferation and Cell Apoptosis, and PLK1 Is Negatively Regulated by miR-4779 in Osteosarcoma Cells. DNA Cell Biol 2020; 39:747-755. [PMID: 32182129 DOI: 10.1089/dna.2019.5002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a ubiquitous serine/threonine protein kinase. It is reported to be involved in the occurrence and progression of various human cancers. In the present study, we explored the role and molecular mechanism of PLK1 in the proliferation of osteosarcoma (OS) cells. We found that PLK1 expression was higher in MG63/Dox cells than in MG63 cells, while inhibiting or interfering with the level of PLK1 suppressed cell proliferation of MG63/Dox cells. TargetScan analysis predicted that miR-4779 would interact with the 3'-UTR of PLK1 mRNAs and also inhibit cell autophagy of MG63/Dox cells. The data demonstrated that miR-4779 negatively regulates the expression of PLK1, and both miR-4779 and PLK1 regulate cell proliferation and cell apoptosis of MG63/Dox cells, processes that are involved in the drug resistance of OS cells.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Kai Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Cui
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Chengbin Ma
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopaedics, The 4th Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Radiosensitization of Non-Small Cell Lung Cancer Cells by the Plk1 Inhibitor Volasertib Is Dependent on the p53 Status. Cancers (Basel) 2019; 11:cancers11121893. [PMID: 31795121 PMCID: PMC6966428 DOI: 10.3390/cancers11121893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a master regulator of mitotic cell division, is highly expressed in non-small cell lung cancer (NSCLC) making it an interesting drug target. We examined the in vitro therapeutic effects of volasertib, a Plk1 inhibitor, in combination with irradiation in a panel of NSCLC cell lines with different p53 backgrounds. Pretreatment with volasertib efficiently sensitized p53 wild type cells to irradiation. Flow cytometric analysis revealed that significantly more cells were arrested in the G2/M phase of the cell cycle after the combination therapy compared to either treatment alone (p < 0.005). No significant synergistic induction of apoptotic cell death was observed, but, importantly, significantly more senescent cells were detected when cells were pretreated with volasertib before irradiation compared to both monotherapies alone (p < 0.001), especially in cells with functional p53. Consequently, while most cells with functional p53 showed permanent growth arrest, more p53 knockdown/mutant cells could re-enter the cell cycle, resulting in colony formation and cell survival. Our findings assign functional p53 as a determining factor for the observed radiosensitizing effect of volasertib in combination with radiotherapy for the treatment of NSCLC.
Collapse
|
6
|
Inhibition of Polo-like Kinase 1 Prevents the Male Pronuclear Formation Via Alpha-tubulin Recruiting in In Vivo-fertilized Murine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Li C, Luo L, Wei S, Wang X. Identification of the potential crucial genes in invasive ductal carcinoma using bioinformatics analysis. Oncotarget 2018; 9:6800-6813. [PMID: 29467930 PMCID: PMC5805516 DOI: 10.18632/oncotarget.23239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is a common histological type of breast cancer. The aim of this study was to identify the potential crucial genes associated with IDC and to provide valid biological information for further investigations. The gene expression profiles of GSE10780 which contained 42 histologically normal breast tissues and 143 IDC tissues were downloaded from the GEO database. Functional and pathway enrichment analysis of differentially expressed genes (DEGs) were performed and protein-protein interaction (PPI) network was analyzed using Cytoscape. In total, 999 DEGs were identified, including 667 up-regulated and 332 down-regulated DEGs. Gene ontology analysis demonstrated that most DEGs were significantly enriched in mitotic cell cycle, adhesion and protein binding process. Through PPI network analysis, a significant module was screened out, and the top 10 hub genes, CDK1, CCNB1, CENPE, CENPA, PLK1, CDC20, MAD2L1, HIST1H2BK, KIF2C and CCNA2 were identified from the PPI network. The expression levels of the 10 genes were validated in Oncomine database. KIF2C, MAD2L1 and PLK1 were associated with the overall survival. And we used cBioPortal to explore the genetic alterations of hub genes and potential drugs. In conclusion, the present study identified DEGs between normal and IDC samples, which could improve our understanding of the molecular mechanisms in the development of IDC, and these candidate genes might be used as therapeutic targets for IDC.
Collapse
Affiliation(s)
- Chunguang Li
- Department of Oncological Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Liangtao Luo
- Department of General Surgery, First Renmin Hospital, Tianmen, Hubei, P. R. China
| | - Sheng Wei
- Department of General Surgery, Traditional Chinese Medicine Hospital, Xishui, Hubei, P. R. China
| | - Xiongbiao Wang
- Department of General Surgery, First Renmin Hospital, Yangxin, Hubei, P. R. China
| |
Collapse
|