1
|
Xiong W, Roach TG, Ball N, Corluka M, Beyer J, Brown AM, Capelluto DGS. An internal linker and pH biosensing by phosphatidylinositol 5-phosphate regulate the function of the ESCRT-0 component TOM1. Structure 2024; 32:1677-1690.e5. [PMID: 39208792 DOI: 10.1016/j.str.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Target of Myb1 (TOM1) facilitates the transport of endosomal ubiquitinated proteins destined for lysosomal degradation; however, the mechanisms regulating TOM1 during this process remain unknown. Here, we identified an adjacent DXXLL motif-containing region to the TOM1 VHS domain, which enhances its affinity for ubiquitin and can be modulated by phosphorylation. TOM1 is an endosomal phosphatidylinositol 5-phosphate (PtdIns5P) effector under Shigella flexneri infection. We pinpointed a consensus PtdIns5P-binding motif in the VHS domain. We show that PtdIns5P binding by TOM1 is pH-dependent, similarly observed in its binding partner TOLLIP. Under acidic conditions, TOM1 retained its complex formation with TOLLIP, but was unable to bind ubiquitin. S. flexneri infection inhibits pH-dependent endosomal maturation, leading to reduced protein degradation. We propose a model wherein pumping of H+ to the cytosolic side of endosomes contributes to the accumulation of TOM1, and possibly TOLLIP, at these sites, thereby promoting PtdIns5P- and pH-dependent signaling, facilitating bacterial survival.
Collapse
Affiliation(s)
- Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tiffany G Roach
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nicolas Ball
- Research and Informatics, University Libraries, Biochemistry Department, and Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Marija Corluka
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Josephine Beyer
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne M Brown
- Research and Informatics, University Libraries, Biochemistry Department, and Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniel G S Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Stewart CM, Bo Y, Fu K, Chan M, Kozak R, Apperley KYP, Laroche G, Daniel R, Beauchemin AM, Kobinger G, Kobasa D, Côté M. Sphingosine Kinases Promote Ebola Virus Infection and Can Be Targeted to Inhibit Filoviruses, Coronaviruses, and Arenaviruses Using Late Endocytic Trafficking to Enter Cells. ACS Infect Dis 2023; 9:1064-1077. [PMID: 37053583 DOI: 10.1021/acsinfecdis.2c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Corina M Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Mable Chan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Robert Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Kim Yang-Ping Apperley
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - André M Beauchemin
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gary Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas 77550, United States
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
- Department of Infectious Diseases and Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
3
|
Hartland EL, Ghosal D, Giogha C. Manipulation of epithelial cell architecture by the bacterial pathogens Listeria and Shigella. Curr Opin Cell Biol 2022; 79:102131. [PMID: 36215855 DOI: 10.1016/j.ceb.2022.102131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/31/2023]
Abstract
Subversion of the host cell cytoskeleton is a virulence attribute common to many bacterial pathogens. On mucosal surfaces, bacteria have evolved distinct ways of interacting with the polarised epithelium and manipulating host cell structure to propagate infection. For example, Shigella and Listeria induce cytoskeletal changes to induce their own uptake into enterocytes in order to replicate within an intracellular environment and then spread from cell-to-cell by harnessing the host actin cytoskeleton. In this review, we highlight some recent studies that advance our understanding of the role of the host cell cytoskeleton in the mechanical and molecular processes of pathogen invasion, cell-to-cell spread and the impact of infection on epithelial intercellular tension and innate mucosal defence.
Collapse
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Qiu S, Lavallée-Adam M, Côté M. Proximity Interactome Map of the Vac14-Fig4 Complex Using BioID. J Proteome Res 2021; 20:4959-4973. [PMID: 34554760 DOI: 10.1021/acs.jproteome.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conversion between phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate on endosomal membranes is critical for the maturation of early endosomes to late endosomes/lysosomes and is regulated by the PIKfyve-Vac14-Fig4 complex. Despite the importance of this complex for endosomal homeostasis and vesicular trafficking, there is little known about how its activity is regulated or how it interacts with other cellular proteins. Here, we screened for the cellular interactome of Vac14 and Fig4 using proximity-dependent biotin labeling (BioID). After independently screening the interactomes of Vac14 and Fig4, we identified 89 high-confidence protein hits shared by both proteins. Network analysis of these hits revealed pathways with known involvement of the PIKfyve-Vac14-Fig4 complex, including vesicular organization and PI3K/Akt signaling, as well as novel pathways including cell cycle and mitochondrial regulation. We also identified subunits of coatomer complex I (COPI), a Golgi-associated complex with an emerging role in endosomal dynamics. Using proximity ligation assays, we validated the interaction between Vac14 and COPI subunit COPB1 and between Vac14 and Arf1, a GTPase required for COPI assembly. In summary, this study used BioID to comprehensively map the Vac14-Fig4 interactome, revealing potential roles for these proteins in diverse cellular processes and pathways, including preliminary evidence of an interaction between Vac14 and COPI. Data are available via ProteomeXchange with the identifier PXD027917.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
5
|
Abstract
Viral infections are a major health problem; therefore, there is an urgent need for novel therapeutic strategies. Antivirals used to target proteins encoded by the viral genome usually enhance drug resistance generated by the virus. A potential solution may be drugs acting at host-based targets since viruses are dependent on numerous cellular proteins and phosphorylation events that are crucial during their life cycle. Repurposing existing kinase inhibitors as antiviral agents would help in the cost and effectiveness of the process, but this strategy usually does not provide much improvement, and specific medicinal chemistry programs are needed in the field. Anyway, extensive use of FDA-approved kinase inhibitors has been quite useful in deciphering the role of host kinases in viral infection. The present perspective aims to review the state of the art of kinase inhibitors that target viral infections in different development stages.
Collapse
Affiliation(s)
- Javier García-Cárceles
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Elena Caballero
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
6
|
Roach TG, Lång HKM, Xiong W, Ryhänen SJ, Capelluto DGS. Protein Trafficking or Cell Signaling: A Dilemma for the Adaptor Protein TOM1. Front Cell Dev Biol 2021; 9:643769. [PMID: 33718385 PMCID: PMC7952518 DOI: 10.3389/fcell.2021.643769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Lysosomal degradation of ubiquitinated transmembrane protein receptors (cargo) relies on the function of Endosomal Sorting Complex Required for Transport (ESCRT) protein complexes. The ESCRT machinery is comprised of five unique oligomeric complexes with distinct functions. Target of Myb1 (TOM1) is an ESCRT protein involved in the initial steps of endosomal cargo sorting. To exert its function, TOM1 associates with ubiquitin moieties on the cargo via its VHS and GAT domains. Several ESCRT proteins, including TOLLIP, Endofin, and Hrs, have been reported to form a complex with TOM1 at early endosomal membrane surfaces, which may potentiate the role of TOM1 in cargo sorting. More recently, it was found that TOM1 is involved in other physiological processes, including autophagy, immune responses, and neuroinflammation, which crosstalk with its endosomal cargo sorting function. Alteration of TOM1 function has emerged as a phosphoinositide-dependent survival mechanism for bacterial infections and cancer progression. Based on current knowledge of TOM1-dependent cellular processes, this review illustrates how TOM1 functions in coordination with an array of protein partners under physiological and pathological scenarios.
Collapse
Affiliation(s)
- Tiffany G. Roach
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Heljä K. M. Lång
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wen Xiong
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - Samppa J. Ryhänen
- Division of Hematology, Oncology, and Stem Cell Transplantation, Children’s Hospital, and Pediatric Research Center, The New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel G. S. Capelluto
- Protein Signaling Domains Laboratory, Department of Biological Sciences, Fralin Life Sciences Institute, and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|