1
|
Kalaigar SS, Rajashekar RB, Nataraj SM, Vishwanath P, Prashant A. Bioinformatic Tools for the Identification of MicroRNAs Regulating the Transcription Factors in Patients with β-Thalassemia. Bioinform Biol Insights 2022; 16:11779322221115536. [PMID: 35935529 PMCID: PMC9354123 DOI: 10.1177/11779322221115536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
β-thalassemia is a significant health issue worldwide, with approximately 7% of the world’s population having defective hemoglobin genes. MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression at the post-transcriptional level by targeting multiple gene transcripts. The levels of fetal hemoglobin (HbF) can be increased by regulating the expression of the γ-globin gene using the suppressive effects of miRNAs on several transcription factors such as MYB, BCL11A, GATA1, and KLF. An early step in discovering miRNA:mRNA target interactions is the computational prediction of miRNA targets that can be later validated with wet-lab investigations. This review highlights some commonly employed computational tools such as miRBase, Target scan, DIANA-microT-CDS, miRwalk, miRDB, and micro-TarBase that can be used to predict miRNA targets. Upon comparing the miRNA target prediction tools, 4 main aspects of the miRNA:mRNA target interaction are shown to include a few common features on which most target prediction is based: conservation sites, seed match, free energy, and site accessibility. Understanding these prediction tools’ usage will help users select the appropriate tool and interpret the results accurately. This review will, therefore, be helpful to peers to quickly choose a list of the best miRNAs associated with HbF induction. Researchers will obtain significant results using these bioinformatics tools to establish a new important concept in managing β-thalassemia and delivering therapeutic strategies for improving their quality of life.
Collapse
Affiliation(s)
- Sumayakausar S Kalaigar
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | | | - Suma M Nataraj
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center for Medical Genomics & Counselling, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India.,Special Interest Group-Human Genomics & Rare Disorders (SIG-HGRD), JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
2
|
Nuclear receptor corepressors in intellectual disability and autism. Mol Psychiatry 2020; 25:2220-2236. [PMID: 32034290 PMCID: PMC7842082 DOI: 10.1038/s41380-020-0667-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by neurocognitive dysfunctions, such as impaired social interaction and language learning. Gene-environment interactions have a pivotal role in ASD pathogenesis. Nuclear receptor corepressors (NCORs) are transcription co-regulators physically associated with histone deacetylases (HDACs) and many known players in ASD etiology such as transducin β-like 1 X-linked receptor 1 and methyl-CpG binding protein 2. The epigenome-modifying NCOR complex is sensitive to many ASD risk factors, including HDAC inhibitor valproic acid and a variety of endocrine factors, xenobiotic chemicals, or metabolites that can directly bind to multiple nuclear receptors. Here, we review recent studies of NCORs in neurocognition using animal models and human genetics approaches. We discuss functional interplays between NCORs and other known players in ASD etiology. It is conceivable that the NCOR complex may bridge the in utero environmental risk factors of ASD with epigenetic remodeling and can serve as a converging point for many gene-environment interactions in the pathogenesis of ASD and intellectual disability.
Collapse
|
3
|
Yeh LY, Yang CC, Wu HL, Kao SY, Liu CJ, Chen YF, Lin SC, Chang KW. The miR-372-ZBTB7A Oncogenic Axis Suppresses TRAIL-R2 Associated Drug Sensitivity in Oral Carcinoma. Front Oncol 2020; 10:47. [PMID: 32083004 PMCID: PMC7005910 DOI: 10.3389/fonc.2020.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/10/2020] [Indexed: 01/31/2023] Open
Abstract
miR-372 has been shown a potent oncogenic miRNA in the pathogenesis of oral squamous cell carcinoma (OSCC). The zinc finger and BTB domain containing 7A protein (ZBTB7A) is a transcriptional regulator that is involved in a great diversity of physiological and oncogenic regulation. However, the modulation of ZBTB7A in OSCC remains unclear. Tissue analysis identifies a reverse correlation in expression between miR-372 and ZBTB7A in OSCC tumors. When OSCC cells have stable knockdown of ZBTB7A, their oncogenic potential and drug resistance is increased. By way of contrast, such an increase is attenuated by expression of ZBTB7A. Screening and validation confirms that ZBTB7A is able to modulate expression of the death receptors TRAIL-R1, TRAIL-R2, Fas and p53 phosphorylated at serine-15. In addition, ZBTB7A transactivates TRAIL-R2, which sensitizes cells to cisplatin-induced apoptosis. The ZBTB7A-TRAIL-R2 cascade is involved in both the extrinsic and intrinsic cisplatin-induced pathways of apoptosis. Database analysis indicates that the expression level of and the copy status of ZBTB7A and TRAIL-R2 are important survival predictors for head and neck cancers. Collectively, this study indicates the importance of the miR-372-ZBTB7A-TRAIL-R2 axis in mediating OSCC pathogenesis and in controlling OSCC drug resistance. Therefore, silencing miR-372 and/or upregulating ZBTB7A would seem to be promising strategies for enhancing the sensitivity of OSCC to cisplatin therapy.
Collapse
Affiliation(s)
- Li-Yin Yeh
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Li Wu
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Fen Chen
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Department of Dentistry, School of Dentistry, Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|