1
|
Liu XY, Zhang W, Ma BF, Sun MM, Shang QH. Advances in Research on the Effectiveness and Mechanism of Active Ingredients from Traditional Chinese Medicine in Regulating Hepatic Stellate Cells Autophagy Against Hepatic Fibrosis. Drug Des Devel Ther 2024; 18:2715-2727. [PMID: 38974122 PMCID: PMC11227309 DOI: 10.2147/dddt.s467480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatic fibrosis (HF) is a pathological process of structural and functional impairment of the liver and is a key component in the progression of chronic liver disease. There are no specific anti-hepatic fibrosis (anti-HF) drugs, and HF can only be improved or prevented by alleviating the cause. Autophagy of hepatic stellate cells (HSCs) is closely related to the development of HF. In recent years, traditional Chinese medicine (TCM) has achieved good therapeutic effects in the prevention and treatment of HF. Several active ingredients from TCM (AITCM) can regulate autophagy in HSCs to exert anti-HF effects through different pathways, but relevant reviews are lacking. This paper reviewed the research progress of AITCM regulating HSCs autophagy against HF, and also discussed the relationship between HSCs autophagy and HF, pointing out the problems and limitations of the current study, in order to provide references for the development of anti-HF drugs targeting HSCs autophagy in TCM. By reviewing the literature in PubMed, Web of Science, Embase, CNKI and other databases, we found that the relationship between autophagy of HSCs and HF is currently controversial. HSCs autophagy may promote HF by consuming lipid droplets (LDs) to provide energy for their activation. However, in contrast, inducing autophagy in HSCs can exert the anti-HF effect by stimulating their apoptosis or senescence, reducing type I collagen accumulation, inhibiting the extracellular vesicles release, degrading pro-fibrotic factors and other mechanisms. Some AITCM inhibit HSCs autophagy to resist HF, with the most promising direction being to target LDs. While, others induce HSCs autophagy to resist HF, with the most promising direction being to target HSCs apoptosis. Future research needs to focus on cell targeting research, autophagy targeting research and in vivo verification research, and to explore the reasons for the contradictory effects of HSCs autophagy on HF.
Collapse
Affiliation(s)
- Xin-Yu Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
| | - Wei Zhang
- Department of Liver Disease, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250000, People’s Republic of China
| | - Bao-Feng Ma
- The third department of encephalopathy, Jinan Integrated Traditional Chinese and Western Medicine Hospital, Jinan, Shandong, 271100, People’s Republic of China
| | - Mi-Mi Sun
- Diagnosis and Treatment Center for Liver Diseases, Tai’an 88 Hospital, Tai’an, Shandong, 271000, People’s Republic of China
| | - Qing-Hua Shang
- Department of Liver Disease, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250000, People’s Republic of China
| |
Collapse
|
2
|
Du Y, Zhu S, Zeng H, Wang Z, Huang Y, Zhou Y, Zhang W, Zhu J, Yang C. Research Progress on the Effect of Autophagy and Exosomes on Liver Fibrosis. Curr Stem Cell Res Ther 2024; 19:785-797. [PMID: 37102476 DOI: 10.2174/1574888x18666230427112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023]
Abstract
Chronic liver disease is a known risk factor for the development of liver cancer, and the development of microRNA (miRNA) liver therapies has been hampered by the difficulty of delivering miRNA to damaged tissues. In recent years, numerous studies have shown that hepatic stellate cell (HSC) autophagy and exosomes play an important role in maintaining liver homeostasis and ameliorating liver fibrosis. In addition, the interaction between HSC autophagy and exosomes also affects the progression of liver fibrosis. In this paper, we review the research progress of mesenchymal stem cell-derived exosomes (MSC-EVs) loaded with specific miRNA and autophagy, and their related signaling pathways in liver fibrosis, which will provide a more reliable basis for the use of MSC-EVs for therapeutic delivery of miRNAs targeting the chronic liver disease.
Collapse
Grants
- 2021A1515011580, 2021B1515140012, 2023A1515010083, 2022A1515011696 Natural Science Foundation of Guangdong Province
- 20211800905342, 20221800905572 Dongguan Science and Technology of Social Development Program
- 20211216 Administration of Traditional Chinese Medicine of Guangdong Province
- A2020096, B2021330 Medical Scientific Research Foundation of Guangdong Province
- k202005 Research and Development Fund of Dongguan People's Hospital
- pdjh2021b0224 Special Funds for the Cultivation of Guangdong College Students' Scientific and Technological Innovation (Climbing Program Special Funds)
- 2020ZZDS002, 2020ZYDS005, 2021ZZDS006, 2021ZCDS003, ZYDS003 Guangdong Medical University Students' Innovation Experiment Program
- GDMU2020010, GDMU2020078, GDMU2021003, GDMU2021049 Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- 202110571010, S202110571078, 202210571008, S202210571075 Provincial and National College Students' Innovation and Entrepreneurship Training Program
- 4SG23033G Guangdong Medical University-Southern Medical University Twinning Research Team Project
- GDMUZ2020009 Scientific Research Fund of Guangdong Medical University
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Silin Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Haojie Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yixing Huang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Weichui Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523716, China
| |
Collapse
|
3
|
Wang T, Lu Z, Sun GF, He KY, Chen ZP, Qu XH, Han XJ. Natural Products in Liver Fibrosis Management: A Five-year Review. Curr Med Chem 2024; 31:5061-5082. [PMID: 38362686 DOI: 10.2174/0109298673288458240203064112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| |
Collapse
|
4
|
Chen S, Liao Z, Zheng T, Zhu Y, Ye L. Protective effect of ligustrazine on oxidative stress and apoptosis following testicular torsion in rats. Sci Rep 2023; 13:20395. [PMID: 37990048 PMCID: PMC10663624 DOI: 10.1038/s41598-023-47210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Testicular torsion is a common urologic emergency and one of the causes of infertility in males. It has been reported that ligustrazine may decrease oxidative stress and reduce ischemia-reperfusion injury. This study aims to investigate the protective effect of ligustrazine in ischemia-reperfusion injury after testicular torsion-detorsion. First, 40 rats were randomly and equally divided into TMP (Ligustrazine) group, the Testicular torsion (T/D) group, the Sham (Sham operation) group, and Control group. The left testis of rats in the TMP and T/D group was rotated for 2 h. The TMP group was intraperitoneally injected with ligustrazine solution and the T/D and the Sham groups were injected with normal saline. The left testes of four groups were obtained for assay on the 4th day after the operation. Average level of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were higher in Sham and Control groups than T/D group and TMP group. Conversely, average level of malondialdehyde (MDA) and reactive oxygen species (ROS) was lower in Sham and Control groups than T/D group and TMP group. In contrast with the T/D group, SOD, GPX, and CAT enzymatic activities increased, whereas MDA and ROS content decreased in the TMP group (P < 0.05). Microscopic observation showed that the testicular tissue of the Sham and Control groups were basically normal. The TMP and T/D groups had significant testicular tissue damage, whereas the TMP group had less damage and apoptosis than the T/D group. The apoptotic index of germ cells in the TMP group (13.05 ± 4.41) was lower than the T/D group (30.23 ± 11.31) (P < 0.05) and higher (P < 0.05) than the Sham group (0.56 ± 0.29). So we found that Ligustrazine lowered ischemia-reperfusion injury after testicular torsion-detorsion by decreasing the reactive oxygen species and suppressing apoptosis.
Collapse
Affiliation(s)
- Songmao Chen
- Provincial Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhengjian Liao
- Department of Neurosurgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Tingting Zheng
- Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuanfan Zhu
- Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Liefu Ye
- Department of Urology, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
5
|
Hu H, Lin G, He F, Liu J, Jia R, Li K, Hong W, Fang M, Zeng JZ. Design, synthesis, and biological evaluation of carbonyl-hydrazine-1-carboxamide derivatives as anti-hepatic fibrosis agents targeting Nur77. Bioorg Chem 2023; 140:106795. [PMID: 37657195 DOI: 10.1016/j.bioorg.2023.106795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-β (TGF-β) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- β 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 μM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.
Collapse
Affiliation(s)
- Hongyu Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Gang Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rong Jia
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenbin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Zhou F, Li X, Jia K, Li F, Xue X, Liu J, Qu J, Liu R. Inhibiting autophagy to boost antitumor immunity with tetramethylpyrazine-loaded and PD-L1-targeting liposomal nanoparticles. Eur J Pharm Sci 2023; 190:106581. [PMID: 37696460 DOI: 10.1016/j.ejps.2023.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Cancer immunotherapy has been recognized as a revolutionary breakthrough and has yielded impressive results. However, a major challenge facing immunotherapy is its limited efficacy, which may be largely due to the inadequate infiltration of immune cells into the tumor microenvironment (TME). Autophagy inhibition has been identified to enhance the recruitment of immune cells into the tumor by upregulating the expression and secretion of chemokines. Here, we verified a novel autophagy inhibitor tetramethylpyrazine (TMP) from natural products using a mCherry-GFP-LC3 probe-based autophagy flux reporter system. We then devised a liposomal system capable of co-delivering DOX and TMP using the thin-film dispersion method and modified the liposome with PD-L1 binding peptide JY4 (DOX-TMP-JY4LIPO). We found that DOX-TMP-JY4LIPO exhibited potent antitumor efficacy in vitro. In addition, DOX-TMP-JY4LIPO could effectively inhibit the autophagic flux to enhance the recruitment of immune cells into the tumor by upregulating CCL5 and CXCL10. The liposome exhibited favorable biocompatibility and safety while facilitating the accumulation of therapeutic drugs in tumors. DOX-TMP-JY4LIPO significantly inhibited tumor growth in LLC xenograft mice, accompanied by increased granzymes- and perforin-mediated cytotoxic immune responses. Our findings demonstrate that the TMP-loaded and PD-L1-targeting liposomal nanoparticles can significantly boost antitumor immunity by inhibiting autophagy, suggesting a novel natural product-based nanomedicine for immunotherapy.
Collapse
Affiliation(s)
- Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
7
|
Min S, Tao W, Ding D, Zhang X, Zhao S, Zhang Y, Liu X, Gao K, Liu S, Li L, Hou M, Li Y. Tetramethylpyrazine ameliorates acute lung injury by regulating the Rac1/LIMK1 signaling pathway. Front Pharmacol 2023; 13:1005014. [PMID: 36686718 PMCID: PMC9859661 DOI: 10.3389/fphar.2022.1005014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) is a respiratory disorder characterized by severe inflammation of the alveoli and lung parenchyma. Tetramethylpyrazine (TMP), the main active compound in Ligusticum chuanxiong Hort (LC), can protect against lipopolysaccharide (LPS)-induced ALI. Our study aimed to investigate how TMP protects the endothelial cell barrier in pulmonary capillaries. We administered TMP intraperitoneally at different doses and found that acute lung injury in mice was improved, but not in a dose-dependent manner. TMP toxicity was tested in vitro. We observed that LPS-induced cytoskeletal remodeling was inhibited by TMP. Murine ALI was induced as follows: For the 1st hit, LPS (2 mg/kg) was injected intraperitoneally; after 16 h, for the 2nd hit, LPS (4 mg/kg) was instilled intratracheally. The mice in treatment groups had TMP or dexamethasone administered intraperitoneally 30 min prior to the 1st hit and 30 min past the 2nd hit. Mice were euthanized 24 h after the last injecting. We measured protein and mRNA levels using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase real-time PCR (RT-qPCR), respectively. The ultrastructural analysis was performed with transmission electron microscopy (TEM) and the cytoskeleton was observed by immunofluorescence. Immunohistochemistry and Western blotting were used to detect protein expression in the Rac1/LIMK1/ZO-1/occludin signal pathway. The results showed that TMP treatment decreased inflammatory cell infiltration and alleviated LPS-induced damage in lung tissue. Also, TMP significantly inhibited the Rac1/LIMK1/ZO-1/occludin signaling pathway. Our findings show that using TMP during sepsis can protect the pulmonary microvascular endothelial cell barrier and suppress inflammation. Therefore, TMP may have a promising therapeutic role in preventing acute lung injury from sepsis.
Collapse
Affiliation(s)
- Simin Min
- School of medicine and health engineering, Changzhou university, Changzhou, Jiangsu, China,Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Weiting Tao
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Dushan Ding
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Yong Zhang
- Department of Respiratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaojie Liu
- Department of Respiratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Kefei Gao
- Department of Respiratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Saisai Liu
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Li
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Min Hou
- Department of Pharmaceutical Engineering, Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Li
- School of medicine and health engineering, Changzhou university, Changzhou, Jiangsu, China,Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui, China,*Correspondence: Yan Li,
| |
Collapse
|
8
|
Zhang L, Zhang H, Gu J, Xu W, Yuan N, Sun J, Li H. Glabridin inhibits liver fibrosis and hepatic stellate cells activation through suppression of inflammation and oxidative stress by activating PPARγ in carbon tetrachloride-treated mice. Int Immunopharmacol 2022; 113:109433. [DOI: 10.1016/j.intimp.2022.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
9
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
10
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
11
|
Antiplatelet Activity of Tetramethylpyrazine via Regulation of the P2Y12 Receptor Downstream Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7941039. [PMID: 35378909 PMCID: PMC8976642 DOI: 10.1155/2022/7941039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022]
Abstract
Background Tetramethylpyrazine (TMP) is an alkaloid in Chinese herbal medicine, which possesses antiplatelet activity. TMP inhibits platelet activation in many ways. The platelet P2Y12 receptor for adenosine 5′ diphosphate (ADP) plays a central role in platelet function, hemostasis, and thrombosis. Here, we investigated the inhibitory effect of TMP on P2Y12 receptor-related platelet function. Methods The inhibitory potential of TMP was assessed using agonist-induced platelet aggregation, flow cytometric analysis of CD62p expression, PAC-1 activation, and fibrin clot retraction. After the P2Y12 receptor-related signaling pathway was inhibited using the blocker, platelet activation was studied by platelet aggregation, CD62p expression, and PAC-1 activation. The secretion of cyclic adenosine monophosphate (cAMP) was measured using enzyme-linked immunosorbent assay (ELISA), and the expression of signaling pathway protein, phosphorylation of vasodilator-stimulated phosphoprotein, and phosphorylation of Akt were investigated using western blotting. The release of platelet inflammatory mediators was measured using ELISA. Results TMP had an antiplatelet effect by inhibiting ADP-induced aggregation, P-selectin secretion, and glycoprotein (GP) IIb/IIIa expression and reducing the release of atherosclerotic-related inflammatory mediators (sCD40L and IL-1β). TMP decreased the area of clot retraction, reflecting inhibition of GPIIb/IIIa activation. TMP inhibited adenosine diphosphate-induced platelet activation via increased cAMP production, VASPser157 phosphorylation, and Akt dephosphorylation. Conclusion TMP selectively inhibits ADP-induced platelet activation via P2Y12 receptor-related signaling pathways.
Collapse
|
12
|
Tang R, Jia L, Li Y, Zheng J, Qi P. Narciclasine attenuates sepsis-induced myocardial injury by modulating autophagy. Aging (Albany NY) 2021; 13:15151-15163. [PMID: 34035183 PMCID: PMC8221305 DOI: 10.18632/aging.203078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022]
Abstract
Acute myocardial injury (AMI) is often secondary to sepsis, which is a life-threatening disease associated with severe cardiac inflammation. Narciclasine, a plant alkaloid isolated from different members of the Amaryllidaceae family, has been extensively characterized as an antitumor and anti-inflammatory compound. In addition, autophagy is critical for sepsis-induced myocardial injury. However, the role and mechanism of autophagy by which narciclasine confers cardioprotection are still unclear. The present study aimed to investigate the underlying mechanism by which narciclasine affects the pathogenesis of sepsis-induced myocardial injury. Narciclasine effectively attenuated LPS-induced myocardial inflammation in vitro and in vivo. In addition, narciclasine protected cardiac function and suppressed the expression of inflammatory cytokines in LPS-induced heart tissue. Furthermore, narciclasine upregulated LPS-induced autophagic activity, and the autophagy inhibitor 3-MA abrogated narciclasine-mediated protection against LPS-induced AMI. Importantly, narciclasine exerted an inhibitory effect on the JNK signaling pathway, and JNK activity was tightly associated with narciclasine-induced autophagy and the consequent protective effects during AMI. Taken together, our findings indicate that narciclasine protects against LPS-induced AMI by inducing JNK-dependent autophagic flux; hence, narciclasine may be an effective and novel agent for the clinical treatment of sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Rong Tang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Liu Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yunlong Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Pingping Qi
- Departments of Blood Transfusion, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
13
|
Zhang P, Gan Z, Tang L, Zhou L, Huang X, Wang J. WITHDRAWN: Exosomes from microRNA-145-5p-modified HUCB-MSCs attenuate CCl4-induced hepatic fibrosis via down-regulating FSCN1 expression. Life Sci 2021:119404. [PMID: 33794251 DOI: 10.1016/j.lfs.2021.119404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Zeying Gan
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Lanyan Tang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Lizhi Zhou
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Xin Huang
- Department of Infection, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China
| | - Jianlong Wang
- Department of Orthopedics, No.3 Hospital of Xiangya, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|