1
|
Li C, Peng S, Tang C. Retracted article: MicroRNA-4521 targets hepatoma up-regulated protein (HURP) to inhibit the malignant progression of breast cancer. Bioengineered 2024; 15:1996016. [PMID: 34699315 PMCID: PMC10826620 DOI: 10.1080/21655979.2021.1996016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022] Open
Abstract
Changwen Li, Sen Pengb, and Chuangang Tanga. MicroRNA-4521 targets hepatoma up-regulated protein (HURP) to inhibit the malignant progression of breast cancer. Bioengineered. 2021 Oct. doi: 10.1080/21655979.2021.1996016.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Changwen Li
- Department of Breast Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Sen Peng
- Department of Pathology, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Tian M, Jiang M, Bi Y, Wang B. miR-1286, a Tumor Suppressor of Gastric Cancer, Serves as a Promising Biomarker for Screening Gastric Cancer from Gastritis. Biochem Genet 2024; 62:3761-3773. [PMID: 38217797 DOI: 10.1007/s10528-023-10618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/15/2024]
Abstract
Gastric cancer (GC) is one of the crucial causes of cancer-associated death worldwide. This study aimed to investigate the biological function of miR-1286 in GC progression in vitro, evaluate the clinical value of serum miR-1286 to screen GC patients and explore its relationship with helicobacter pylori (HP) infection and peritoneal metastasis in GC patients. Expression of miR-1286 was measured by RT-qPCR. Cell Counting Kit-8 assay was utilized for measuring GC cell proliferation ability. The migration and invasion abilities of GC cells were measured using Transwell assays. Serum samples were obtained from 108 GC patients, 62 gastritis cases and 62 healthy volunteers. The diagnostic performance of miR-1286 was assessed using ROC analysis, and the predictive value of miR-1286 for peritoneal metastasis onset was analyzed using logistic regression analysis. miR-1286 played as a tumor suppressor in GC progression by inhibiting GC cell proliferation, migration and invasion. In GC patients, significantly decreased miR-1286 was observed compared to gastritis and healthy controls, and had considerable diagnostic accuracy to distinguish GC from the controls. A significant association was found between miR-1286 expression and HP infection, peritoneal metastasis and TNM stage. Moreover, miR-1286 was lowly expressed in GC patients with peritoneal metastasis, and independently predicted the occurrence of peritoneal metastasis in GC. miR-1286 acts as a tumor suppressor and a biomarker in GC, and is closely associated with HP infection and peritoneal metastasis onset. The methods to regulate miR-1286 may be novel strategies to improve the treatment of GC.
Collapse
Affiliation(s)
- Min Tian
- Department of Laboratory, Huantai County People's Hospital, Zibo, 256400, Shandong, China
| | - Meiquan Jiang
- Department of General Surgery, Peking University Care Luzhong Hospital, Zibo, 255499, Shandong, China
| | - Yingjie Bi
- Department of Gastroenterology, Peking University Care Luzhong Hospital, Zibo, 255499, Shandong, China
| | - Bing Wang
- Department of Otolaryngology Head and Neck Surgery, Peking University Care Luzhong Hospital, No. 65, Linyi District, Zibo, 255499, Shandong, China.
| |
Collapse
|
3
|
Liu Y, Jiang Y, Qiu P, Ma T, Bai Y, Bu J, Hu Y, Jin M, Zhu T, Gu X. RGS10 deficiency facilitates distant metastasis by inducing epithelial-mesenchymal transition in breast cancer. eLife 2024; 13:RP97327. [PMID: 39145770 PMCID: PMC11326775 DOI: 10.7554/elife.97327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Distant metastasis is the major cause of death in patients with breast cancer. Epithelial-mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Bai
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Jin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Zhu
- Breast Surgery of Panjin Central Hospital, Panjin, China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zheng B, Geng Y, Li Y, Huang H, Liu A. Specificity protein 1/3 regulate T-cell acute lymphoblastic leukemia cell proliferation and apoptosis through β-catenin by acting as targets of miR-495-3p. Ann Hematol 2024; 103:2945-2960. [PMID: 38829410 DOI: 10.1007/s00277-024-05764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic heterogeneous disease. This study explored the mechanism of specificity protein 1/3 (Sp1/3) in T-ALL cells through β-catenin by acting as targets of miR-495-3p. Expression levels of miR-495-3p, Sp1, Sp3, and β-catenin in the serum from T-ALL children patients, healthy controls, and the T-ALL cell lines were measured. The cell proliferation ability and apoptosis rate were detected. Levels of proliferation-related proteins proliferating cell nuclear antigen (PCNA)/cyclinD1 and apoptosis-related proteins B-cell lymphoma-2 associated X protein (Bax)/B-cell lymphoma-2 (Bcl-2) were determined. The binding of Sp1/3 and β-catenin promoter and the targeted relationship between miR-495-3p with Sp1/3 were analyzed. Sp1/3 were upregulated in CD4+ T-cells in T-ALL and were linked with leukocyte count and risk classification. Sp1/3 interference prevented proliferation and promoted apoptosis in T-ALL cells. Sp1/3 transcription factors activated β-catenin expression. Sp1/3 enhanced T-ALL cell proliferation by facilitating β-catenin expression. miR-495-3p targeted and repressed Sp1/3 expressions. miR-495-3p overexpression inhibited T-ALL cell proliferation and promoted apoptosis. Conjointly, Sp1/3, as targets of miR-495-3p limit apoptosis and promote proliferation in T-ALL cells by promoting β-catenin expression.
Collapse
Affiliation(s)
- Boyang Zheng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yueqi Geng
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yan Li
- Department of Hematology, Hainan Cancer Hospital, Haikou, China
| | - Huixiong Huang
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China
| | - Aichun Liu
- Hematology clinic, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
5
|
Dai Q, Shi R, Zhang G, Wang Y, Ye L, Peng L, Guo S, He J, Yang H, Jiang Y. miR-539-5p targets BMP2 to regulate Treg activation in B-cell acute lymphoblastic leukemia through TGF-β/Smads/MAPK. Exp Biol Med (Maywood) 2024; 249:10111. [PMID: 38510491 PMCID: PMC10954254 DOI: 10.3389/ebm.2024.10111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/02/2023] [Indexed: 03/22/2024] Open
Abstract
MicroRNAs (mRNAs) were believed to play an important role in cancers, and this study aimed to explore the mechanism of miRNA regulating Treg in B-cell acute lymphoblastic leukemia (B-ALL). Firstly, the differentially expressed miRNAs and target genes significantly associated with Tregs were screened out by high-throughput sequencing, and their enrichment pathways were analyzed. The binding relationship between miRNA and target genes was further verified, and the effects of miRNA on the proliferation and apoptosis of B-ALL Nalm-6 cells and Treg activation were analyzed. Results showed that differentially expressed miR-539-5p was significantly under-expressed, and its target gene BMP2 was significantly over-expressed in B-ALL, and significantly enriched in the TGF-β1 pathway. In addition, both miR-539-5p and BMP2 were significantly correlated with Treg activity in B-ALL. In vitro experiments further confirmed that miR-539-5p could directly target BMP2. The low expression of miR-539-5p in B-ALL significantly promoted BMP2 expression to promote the proliferation and inhibit apoptosis of Nalm-6 cells. Furthermore, the high expression of BMP2 in B-ALL could cooperate with TGF-β1 to promote the activation of human CD4+CD25-T cells to Treg, and significantly activate the TGF-β/Smads/MAPK pathway. In vivo experiments also confirmed that overexpression of miR-539-5p significantly inhibited BMP2 to suppress Treg activation and Smad1 and Smad2 phosphorylation, and finally inhibit the B-ALL process. In conclusion, miR-539-5p was significantly under-expressed in B-ALL and could target BMP2 to promote its expression, and the overexpressed BMP2 further promoted Treg activation in B-ALL by regulating TGF-β/Smads/MAPK pathway.
Collapse
Affiliation(s)
- Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Obstetric and Gynecological and Pediatric Diseases and Birth Defects of Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Sadovska L, Zayakin P, Eglītis K, Endzeliņš E, Radoviča-Spalviņa I, Avotiņa E, Auders J, Keiša L, Liepniece-Karele I, Leja M, Eglītis J, Linē A. Comprehensive characterization of RNA cargo of extracellular vesicles in breast cancer patients undergoing neoadjuvant chemotherapy. Front Oncol 2022; 12:1005812. [PMID: 36387168 PMCID: PMC9644097 DOI: 10.3389/fonc.2022.1005812] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
Extracellular vesicles (EVs) are g7aining increased attention as carriers of cancer-derived molecules for liquid biopsies. Here, we studied the dynamics of EV levels in the plasma of breast cancer (BC) patients undergoing neoadjuvant chemotherapy (NAC) and explored the relevance of their RNA cargo for the prediction of patients' response to the therapy. EVs were isolated from serial blood samples collected at the time of diagnosis, at the end of NAC, and 7 days, 6, and 12 months after the surgery from 32 patients with locally advanced BC, and 30 cancer-free healthy controls (HCs) and quantified by nanoparticle tracking analysis. The pre-treatment levels of EVs in BC patients were higher than in HCs, significantly increased during the NAC and surgery, and decreased to the levels found in HCs 6 months after surgery, thus showing that a substantial fraction of plasma EVs in BC patients are produced due to the disease processes and treatment. RNA sequencing analysis revealed that the changes in the EV levels were associated with the alterations in the proportions of various RNA biotypes in EVs. To search for RNA biomarkers that predict response to the NAC, patients were dichotomized as responders and non-responders based on Miller-Payne grades and differential expression analyses were carried out between responders and non-responders, and HCs. This resulted in the identification of 6 miRNAs, 4 lncRNAs, and 1 snoRNA that had significantly higher levels in EVs from non-responders than responders at the time of diagnosis and throughout the NAC, and significantly lower levels in HCs, thus representing biomarkers for the prediction of response to NAC at the time of diagnosis. In addition, we found 14 RNAs representing piRNA, miRNA, lncRNA, snoRNA, and snRNA biotypes that were induced by NAC in non-responders and 2 snoRNAs and 1 piRNA that were induced by NAC in patients with early disease progression, thus warranting further functional studies on their role in chemoresistance and metastasis.
Collapse
Affiliation(s)
- Lilite Sadovska
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Pawel Zayakin
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kristaps Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
| | - Edgars Endzeliņš
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Elīza Avotiņa
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Jānis Auders
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Keiša
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Inta Liepniece-Karele
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
- Department of Pathology, Riga Stradins University, Riga, Latvia
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Jānis Eglītis
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
- University of Latvia, Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Aija Linē
- Cancer Biomarker group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
7
|
Wang W, Wang B. KDM3A-mediated SP1 activates PFKFB4 transcription to promote aerobic glycolysis in osteosarcoma and augment tumor development. BMC Cancer 2022; 22:562. [PMID: 35590288 PMCID: PMC9118730 DOI: 10.1186/s12885-022-09636-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/05/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lysine-specific histone demethylase 3A (KDM3A) is a potent histone modifier that is frequently implicated in the progression of several malignancies. However, its role in aerobic glycolysis of osteosarcoma (OS) remains unclear. METHODS KDM3A expression in OS tissues was determined by immunohistochemistry, and that in acquired OS cells was determined by RT-qPCR and western blot assays. KDM3A was silenced in OS cells to examine cellular behaviors and the aerobic glycolysis. Stably transfected cells were injected into nude mice for in vivo experiments. The downstream targets of KDM3A were predicted by bioinformatics systems and validated by ChIP-qPCR. Rescue experiments of SP1 and PFKFB4 were performed to examine their roles in the KDM3A-mediated events. RESULTS KDM3A was highly expressed in OS tissues and cells. Knockdown of KDM3A weakened OS cell growth and metastasis in vivo and in vitro, and it suppressed the aerobic glycolysis in OS cells. KDM3A enhanced the transcription of SP1 by demethylating H3K9me2 on its promoter. Restoration of SP1 rescued growth and metastasis of OS cells and recovered the glycolytic flux in cells suppressed by knockdown of KDM3A. SP1 bound to the PFKFB4 promoter to activate its transcription and expression. PFKFB4 expression in OS cells was suppressed by KDM3A silencing but increased after SP1 restoration. Overexpression of PFKFB4 significantly promoted OS cell growth and metastasis as well as the glycolytic flux in cells. CONCLUSION This paper elucidates that upregulation of PFKFB4 mediated by the KDM3A-SP1 axis promotes aerobic glycolysis in OS and augments tumor development.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China
| | - Bin Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110000, Liaoning, P.R. China.
| |
Collapse
|
8
|
Li X, Ren Y, Liu D, Yu X, Chen K. Role of miR-100-5p and CDC25A in breast carcinoma cells. PeerJ 2022; 9:e12263. [PMID: 35036112 PMCID: PMC8734459 DOI: 10.7717/peerj.12263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To inquiry about mechanism of miR-100-5p/CDC25A axis in breast carcinoma (BC), thus offering a new direction for BC targeted treatment. METHODS qRT-PCR was employed to explore miR-100-5p and CDC25A mRNA levels. Western blot was employed for detecting protein expression of CDC25A. Targeting relationship of miR-100-5p and CDC25A was verified by dual-luciferase assay. In vitro experiments were used for assessment of cell functions. RESULTS In BC tissue and cells, miR-100-5p was significantly lowly expressed (P < 0.05) while CDC25A was highly expressed. Besides, miR-100-5p downregulated CDC25A level. miR-100-5p had a marked influence on the prognosis of patients. The forced miR-100-5p expression hindered BC cell proliferation, migration and invasion, and facilitated cell apoptosis. Upregulated miR-100-5p weakened promotion of CDC25A on BC cell growth. CONCLUSION Together, these findings unveiled that CDC25A may be a key target of miR-100-5p that mediated progression of BC cells. Hence, miR-100-5p overexpression or CDC25A suppression may contribute to BC diagnosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.,Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang province, China
| | - Donghong Liu
- Department of Laboratory Medicine, Hangyan hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang province, China
| |
Collapse
|
9
|
Liu J, Yu H, Wei F, Cui H, Yan T, Li T, Liu Y, Chu J. lncRNA LINC000466 predicts the prognosis and promotes the progression of triple-negative breast cancer via modulating miR-539-5p. Clin Breast Cancer 2022; 22:374-380. [DOI: 10.1016/j.clbc.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 12/21/2022]
|
10
|
miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE. Cell Death Discov 2021; 7:272. [PMID: 34601499 PMCID: PMC8487425 DOI: 10.1038/s41420-021-00659-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a common tumor that harms human health with a high recurrence rate. It has been reported that the expression of microRNA-539 (miR-539) is low in several types of cancer, including CRC. Tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8/TIPE) is highly expressed in CRC and promotes the proliferation, migration and angiogenesis of CRC. However, the relationship between miR-539 and TIPE and the mechanisms by which they regulate the proliferation of CRC remain to be explored. We aimed to investigate the functions and mechanisms of miR-539 in CRC proliferation. Functionally, miR-539 can bind to and regulate the expression of TIPE, and miR-539 activates SAPK/JNK to downregulate the expression of glutathione peroxidase 4 (GPX4) and promote ferroptosis. Our data reveal the novel role of miR-539 in regulating ferroptosis in CRC via activation of the SAPK/JNK axis, providing new insight into the mechanism of abnormal proliferation in CRC and a novel potential therapeutic target for advanced CRC.
Collapse
|
11
|
Liu H, Yang M, Zhang Y, Yang Z, Chen Z, Xie Y, Peng B, Cai L. The effect of miR-539 regulating TRIAP1 on the apoptosis, proliferation, migration and invasion of osteosarcoma cells. Cancer Cell Int 2021; 21:227. [PMID: 33879126 PMCID: PMC8056639 DOI: 10.1186/s12935-021-01909-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The purpose of this study is to explore the effect of miRNA-539 on osteosarcoma (OS) and the underlying mechanism, so as to find a new method for early diagnosis and treatment of osteosarcoma. Method miRNA-539 mimics was transfected into osteosarcoma cells 143b and MG-63 and upregulated the expression of miR-539. QT-PCR was used to detect transfection efficacy. CCK-8 method was used to detect proliferation of 143b and MG-63 osteosarcoma cells and flow cytometry was used to detect the apoptosis of osteosarcoma cells 143b and MG-63. Wound-healing test and Transwell test were used to detect the migration and invasion ability of osteosarcoma cells. TRIAP1 was found to be the potential target gene of miRNA-539 by online bioinformatics software and the expression level of TRIAP1 in osteosarcoma cells overexpressing miRNA-539 was detected by qT-PCR. Western blot was used to detect the level of expression of TRIAP1 and its downstream genes (p53, p21, apaf1 and caspase9) in osteosarcoma cells 143b and MG63 transfected with miR-539 mimics or miR-539 mimics-NC. A model of osteosarcoma subcutaneously transplanted in nude mice was constructed to observe the effect of miRNA-539 on the growth rate of osteosarcoma in vivo. Results After transfection of miRNA-539 mimics in osteosarcoma cells 143b and MG63, the proliferation level, migration ability, and invasion ability of the osteosarcoma cells were significantly lower than that in the control group, and the apoptosis level was significantly higher than that in the control group (P < 0.01). The dual luciferase reporter confirmed that TRIAP1 was the target of miR-539, and the expression level of TRIAP1 in 143b and MG63 transfected with miRNA-539 mimics was proved to be significantly lower than that in the control group (P < 0.01).The western blot showed the expression of genes targeted by TRIAP1 was upregulated when the expression of TRIAP1 was downregulated. In vivo, the osteosarcoma growth rate in the miRNA-539 mimics group was significantly slower than that in the control group (P < 0.01). Conclusions MiRNA-539 may inhibit the cell proliferation, migration and invasion of osteosarcoma cells and promote the apoptosis of osteosarcoma cells by targeting on TRIAP1.
Collapse
Affiliation(s)
- Huowen Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Joint Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Min Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yufeng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhe Chen
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Binglong Peng
- Department of Joint Surgery, Jiangxi Pingxiang People's Hospital, Pingxiang, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
12
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
13
|
Identification of MicroRNAs as Diagnostic Biomarkers for Breast Cancer Based on the Cancer Genome Atlas. Diagnostics (Basel) 2021; 11:diagnostics11010107. [PMID: 33440868 PMCID: PMC7827427 DOI: 10.3390/diagnostics11010107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer among women worldwide. MicroRNAs (miRNAs or miRs) play an important role in tumorigenesis, and thus, they have been identified as potential targets for translational research with diagnostic, prognostic, and therapeutic markers. This study aimed to identify differentially expressed (DE) miRNAs in breast cancer using the Cancer Genome Atlas. The miRNA profiles of 755 breast cancer tissues and 86 adjacent non-cancerous breast tissues were analyzed using Multi Experiment Viewer; miRNA–mRNA network analyses and constructed KEGG pathways with the predicted target genes were performed. The clinical relevance of miRNAs was investigated using area under the receiver operating characteristic curve (AUC) analysis, sensitivity, and specificity. The analysis identified 28 DE miRNAs in breast cancer tissues, including nine upregulated and 19 downregulated miRNAs, compared to non-cancerous breast tissues (p < 0.001). The AUC for each DE miRNA, miR-10b, miR-21, miR-96, miR-99a, miR-100, miR-125b-1, miR-125b-2, miR-139, miR-141, miR-145, miR-182, miR-183, miR-195, miR-200a, miR-337, miR-429, and let-7c, exceeded 0.9, indicating excellent diagnostic performance in breast cancer. Moreover, 1381 potential target genes were predicted using the prediction database tool, miRNet. These genes are related to PD-L1 expression and PD-1 checkpoint in cancer, MAPK signaling, apoptosis, and TNF pathways; hence, they regulate the development, progression, and immune escape of cancer. Thus, these 28 miRNAs can serve as prospective biomarkers for the diagnosis of breast cancer. Taken together, these results provide insight into the pathogenic mechanisms and potential therapies for breast cancer.
Collapse
|
14
|
Construction of a Potential Breast Cancer-Related miRNA-mRNA Regulatory Network. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6149174. [PMID: 33204705 PMCID: PMC7657683 DOI: 10.1155/2020/6149174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
Background Breast cancer is a malignant tumor that occurs in the epithelial tissue of the breast gland and has become the most common malignancy in women. The regulation of the expression of related genes by microRNA (miRNA) plays an important role in breast cancer. We constructed a comprehensive breast cancer-miRNA-gene interaction map. Methods Three miRNA microarray datasets (GSE26659, GSE45666, and GSE58210) were obtained from the GEO database. Then, the R software “LIMMA” package was used to identify differential expression analysis. Potential transcription factors and target genes of screened differentially expressed miRNAs (DE-miRNAs) were predicted. The BRCA GE-mRNA datasets (GSE109169 and GSE139038) were downloaded from the GEO database for identifying differentially expressed genes (DE-genes). Next, GO annotation and KEGG pathway enrichment analysis were conducted. A PPI network was then established, and hub genes were identified via Cytoscape software. The expression and prognostic roles of hub genes were further evaluated. Results We found 6 upregulated differentially expressed- (DE-) miRNAs and 18 downregulated DE-miRNAs by analyzing 3 Gene Expression Omnibus databases, and we predicted the upstream transcription factors and downstream target genes for these DE-miRNAs. Then, we used the GEO database to perform differential analysis on breast cancer mRNA and obtained differentially expressed mRNA. We found 10 hub genes of upregulated DE-miRNAs and 10 hub genes of downregulated DE-miRNAs through interaction analysis. Conclusions In this study, we have performed an integrated bioinformatics analysis to construct a more comprehensive BRCA-miRNA-gene network and provide new targets and research directions for the treatment and prognosis of BRCA.
Collapse
|
15
|
Zang H, Li Y, Zhang X, Huang G. Blocking circ_0000520 Suppressed Breast Cancer Cell Growth, Migration and Invasion Partially via miR-1296/SP1 Axis Both in vitro and in vivo. Cancer Manag Res 2020; 12:7783-7795. [PMID: 32922078 PMCID: PMC7457856 DOI: 10.2147/cmar.s251666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BCa) is an overwhelming malignant tumor mainly in women globally. Circular RNAs (circRNAs) are a special type of noncoding RNAs involved in competing endogenous RNA (ceRNA) network, a classic molecular mechanism of the tumorigenesis of human cancers, including BCa. Here, we intended to explore the role and mechanism of hsa_circ_0000520 (circ_0000520) in BCa cells. Methods Expression of circ_0000520, miRNA-1296-5p (miR-1296) and specificity protein 1 (SP1) was measured by real time-quantitative PCR and Western blotting. Cell growth was measured by cell counting kit-8, colony formation assay and flow cytometry method. Cell migration and invasion were assessed by transwell assays and Western blotting. Tumor growth was determined by xenograft models. The direct interaction among circ_0000520, miR-1296 and SP1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results circ_0000520 was upregulated in BCa tumors and cell lines (T47D, MCF7, MDA-MB-231, BT549, and SKBR3), and circ_0000520 high expression was associated with poor overall survival. Blocking circ_0000520 suppressed cell viability, colony formation, migration and invasion, but promoted cell cycle arrest and apoptosis rate in MDA-MB-231 and MCF7 cells. circ_0000520 could directly regulate miR-1296 expression, and SP1 was a novel target for miR-1296. Moreover, the anti-tumor role of circ_0000520 silencing was abrogated by miR-1296 downregulation or SP1 restoration. Notably, tumor growth of MDA-MB-231 cells in mice was restrained by circ_0000520 deletion. Conclusion circ_0000520 knockdown could suppress cell growth, migration and invasion both in vitro and in vivo through regulating miR-1296/SP1 pathway.
Collapse
Affiliation(s)
- Hongliang Zang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhui Li
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guomin Huang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
16
|
MicroRNA-122-5p inhibits cell proliferation, migration and invasion by targeting CCNG1 in pancreatic ductal adenocarcinoma. Cancer Cell Int 2020; 20:98. [PMID: 32256207 PMCID: PMC7106816 DOI: 10.1186/s12935-020-01185-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a lethal human malignancy, and previous researches support the contribution of microRNA (miRNA) to cancer progression. MiR-122-5p is reported to participate in the regulation of various cancers, while the function of miR-122-5p in PDAC remains unclear. In this study, we investigated the precise mechanism of miR-122-5p involved in PDAC pathogenesis. Methods The expression levels of miR-122-5p were detected in human PDAC tissues and cell lines by miRNA RT-PCR. The effects of miR-122-5p on cell proliferation were explored by MTT assays, colony formation assays and flow cytometry assays. The ability of migration and invasion was determined by transwell assays. Dual Luciferase reporter assay was performed to validate the direct interaction between miR-122-5p and its target gene. The related molecules of cell cycle, apoptosis and epithelial–mesenchymal transition (EMT) were examined with qRT-PCR and western blot. In addition, xenograft mouse models were applied to explore the effects of miR-122-5p in vivo. Results MiR-122-5p was underexpressed, while CCNG1 was highly expressed in PDAC tissues and cells. MiR-122-5p was negatively correlated with TNM stage, tumor size and lymph node metastasis in PDAC patients. Overexpression of miR-122-5p suppressed the proliferation, migration and invasion in vitro and inhibited tumorigenesis in vivo. Furthermore, CCNG1 was a direct target of miR-122-5p. Upregulated CCNG1 could partially reverse the effects caused by miR-122-5p. Moreover, miR-122-5p inhibited EMT through downregulation of CCNG1. Conclusion Overexpression of miR-122-5p could inhibit cell proliferation, migration, invasion, and EMT by downregulating CCNG1 in PDAC, suggesting a potential therapeutic target for PDAC.
Collapse
|