1
|
Zeng Y, Yang Z, Yang Y, Wang P. LncRNA NUTM2A-AS1 silencing inhibits glioma via miR-376a-3p/YAP1 axis. Cell Div 2024; 19:17. [PMID: 38730506 PMCID: PMC11088135 DOI: 10.1186/s13008-024-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The lncRNA NUTM2A-AS1 has been shown to be dysregulated in gastric cancer, while the roles in glioma is unclear. The aim of this study was to investigate the roles and potential mechanisms of lncRNA NUTM2A-AS1 in the proliferation and apoptosis of glioma cells. The StarBase software and dual luciferase reporter assay were used to identify the relationship between lncRNA NUTM2A-AS1 and miR-376a-3p, and miR-376a-3p and YAP1. The expression of lncRNA NUTM2A-AS1, miR-376a-3p, and YAP1 in human glioma cell lines was detected by qRT-PCR. MTT and flow cytometry were used to detect the effects of lncRNA NUTM2A-AS1 or miR-376a-3p on the proliferation and apoptosis of U251 and A172 cells, respectively. In addition, changes of Bax and Bcl-2 expression in glioma cells were further verified by western blotting and qRT-PCR. The results showed that the expression of lncRNA NUTM2A-AS1 was elevated in glioma cell lines, while miR-376a-3p was decreased. LncRNA NUTM2A-AS1 was negatively correlated with miR-376a-3p. Silencing of lncRNA NUTM2A-AS1 enhanced the levels of miR-376a-3p, leading to reduced cell proliferation and increased apoptosis in glioma cells. YAP1 was a direct target of miR-376a-3p, and it was negatively regulated by miR-376a-3p in U251 and A172 cells. Further mechanistic studies suggested that miR-376a-3p reduced glioma cell proliferation and increased apoptosis by inhibiting YAP1 expression. In addition, lncRNA NUTM2A-AS1 positively regulated of YAP1 expression in glioma cells. In conclusion, silencing of lncRNA NUTM2A-AS1 inhibited proliferation and induced apoptosis in human glioma cells via the miR-376a-3p/YAP1 axis.
Collapse
Affiliation(s)
- Yuecheng Zeng
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Zhenyu Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China
| | - Yang Yang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Street, Xiangcheng District, Xiangyang, 441021, China.
| |
Collapse
|
2
|
Puła A, Robak T, Dróżdż I, Stawiski K, Rycerz A, Misiewicz M, Robak P. Circulating serum microRNAs as biomarkers of drug resistance in multiple myeloma patients treated with bortezomib-based regimens - pilot study. Leuk Lymphoma 2024; 65:257-264. [PMID: 37948578 DOI: 10.1080/10428194.2023.2278431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Despite advances in multiple myeloma (MM) treatment, drug resistance remains a clinical challenge. We aimed to develop a prognostic model for bortezomib resistance based on miRNA expression profiling. The study included 40 previously untreated MM patients receiving bortezomib-based regimens (20 treatment-sensitive, 20 resistant). Pretreatment venous blood samples were analyzed for miRNA expression. Differential expression analysis revealed upregulated miR-27b-3p (FC 1.45, p = 0.017) and let-7b-5p (FC 1.44, p = 0.025) in the resistant group. Univariate analysis identified let-7b-5p (OR 3.17, 95%CI: 1.19-11.4, p = 0.04) and miR-27b-3p (OR 4.73, 95%CI: 1.4-26.6, p = 0.036) as risk factors for resistance. The final multivariate model included miR-27b-3p (OR 23.1, 95% CI: 2.8-452, p = 0.015), let-7b-5p (OR 4.38, 95% CI: 1.28-22.2, p = 0.038), and miR-103a-3p (OR 15.3, 95% CI: 1.33-351, p = 0.049). These miRNAs may serve as biomarkers of treatment response in MM. However, external validation is necessary to confirm the clinical utility of our model.
Collapse
Affiliation(s)
- Anna Puła
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksander Rycerz
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
3
|
Yu Z, Lu C, Lai Y. A serum miRNAs signature for early diagnosis of bladder cancer. Ann Med 2023; 55:736-745. [PMID: 36856518 PMCID: PMC9980012 DOI: 10.1080/07853890.2023.2172206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Bladder cancer accounts for the most common type of urologic malignancy and presents high recurrence rate after surgical resection and adjuvant intravesical therapy. We aim to search for an early diagnostic biomarker in serum for bladder cancer in this study. METHODS The expression profiles of miRNAs in serum samples of 112 bladder cancer patients and 112 healthy controls were detected with real-time polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve and area under curve (AUC) analysis were performed to assess the diagnostic efficiency of miRNAs. Stepwise logic regression analysis was used to construct a diagnostic signature with highest sensitivity and specificity. Bioinformatics analysis was applied to explore the potential biological functions and mechanisms of candidate miRNAs. RESULTS Five miRNAs including miR-451a, miR-381-3p, miR-223-3p, miR-142-5p and miR-27b-3p were found differentially expressed in serum samples of bladder patients and healthy subjects. The diagnostic signature was constructed with miR-27b-3p, miR-381-3p and miR-451a. AUC of the three-miRNA signature was 0.894 (0.837-0.936, p < 0.001). The sensitivity and specificity of this signature were 86.90% and 77.38%, respectively, indicating that this signature has a good ability to diagnose bladder cancer. CONCLUSION The three-miRNA signature we constructed has favorable diagnostic capacity and may be a promising non-invasive biomarker in the early diagnosis of bladder cancer.KEY MESSAGESThere is still no clinical utilization of serum miRNAs in the early detection of bladder cancer.We screened and constructed a three-miRNA signature with the sensitivity of 86.90% and specificity of 77.38% which may be a promising non-invasive biomarker in the early diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Zuhu Yu
- Department of Urology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Chong Lu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China.,The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
4
|
Yang X, Man D, Zhao P, Li X. Quantitative study of bioinformatics analysis on glioma: a bibliometric analysis. Front Oncol 2023; 13:1222797. [PMID: 38045000 PMCID: PMC10690598 DOI: 10.3389/fonc.2023.1222797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background The bioinformatics analysis on glioma has been a hot point recently. The purpose of this study was to provide an overview of the research in this field using a bibliometric method. Methods The Web of Science Core Collection (WOSCC) database was used to search for literature related to the bioinformatics analysis of gliomas. Countries, institutions, authors, references, and keywords were analyzed using VOSviewer, CiteSpace, and Microsoft Excel software. Result China was the most productive country, while the USA was the most cited. Capital Medical University had the largest number of publications and citations. Institutions tend to collaborate more with other institutions in their countries rather than foreign ones. The most productive and most cited author was Jiang Tao. Two citation paths were identified, with literature in basic research journals often cited in clinical journals. Immune-related vocabularies appeared frequently in recent studies. Conclusion Glioma bioinformatics analyses spanned a wide range of fields. The international communication in this field urgently needs to be strengthened. Glioma bioinformatics approaches are developing from basic research to clinical applications. Recently, immune-related research has become a focus.
Collapse
Affiliation(s)
- Xiaobing Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Dulegeqi Man
- Department of Neurosurgery, International Mongolia Hospital of Inner Mongolia, Hohhot, China
| | - Peng Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
5
|
Wei H, Li Z, Zhao Y, Zhu S, Wen S, Quan C. Six-transmembrane epithelial antigen of prostate 3 (STEAP3) is a potential prognostic biomarker in clear cell renal cell carcinoma that correlates with M2 macrophage infiltration and epithelial-mesenchymal. Cancer Rep (Hoboken) 2023; 6:e1824. [PMID: 37344930 PMCID: PMC10432435 DOI: 10.1002/cnr2.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The six-transmembrane epithelial antigen of the prostate 3 (STEAP3) is a metalloreductase, which is essential for iron uptake. Existing literature has shown that STEAP3 may perform an important role in the onset and progression of tumors. Nonetheless, a complete pan-cancer investigation of the prognostic significance and immune properties of STEAP3 is currently unavailable. AIMS As part of our investigation into the possible functions of STEAP3 in malignancies, we conducted a comprehensive analysis to examine the prognostic value and immune features of STEAP3 in human pan-cancer. METHODS AND RESULTS R and Cytoscape programs were applied to analyze and visualize the data. The expression of STEAP3 in both cell lines and tissues was measured utilizing a variety of approaches. Using the shRNA knockdown technique, we tested the viability of the A498 and 786-O cell lines and validated their functions. Both CCK-8 and transwell assays were conducted to estimate cell proliferation and invasion. The expression of STEAP3 was substantially elevated and was shown to be linked to prognosis in the majority of malignancies, notably in clear cell renal cell carcinoma (ccRCC). In addition, the expression of STEAP3 was shown to have a strong correlation with immune infiltrates, which in turn triggered the recruitment and polarization of M2 macrophages in ccRCC. The protein STEAP3 shows promise as a predictor of responses to immune-checkpoint blockade (ICB) therapy. Positive links between STEAP3 and the epithelial-mesenchymal transition (EMT), the p53 pathway, and the immune-associated pathways were also found in the enrichment analysis. Our results illustrated that the STEAP3 expression level was substantially elevated in ccRCC tissues and suggested that it could stimulate EMT in ccRCC by downregulating CDH1. CONCLUSION In a diverse range of cancers, STEAP3 might serve as a biomarker for determining the prognosis as well as a predictor of immunotherapy responsiveness. STEAP3 is a novel biological marker for determining prognosis, and it also performs a remarkable function in the promotion of tumor growth in ccRCC by enhancing invasion and EMT, as well as by triggering the recruitment and polarization of M2 macrophages.
Collapse
Affiliation(s)
- Haotian Wei
- Department of UrologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhaochen Li
- Department of UrologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| | - Yang Zhao
- Department of RadiologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| | - Shimiao Zhu
- Department of UrologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| | - Simeng Wen
- Department of UrologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| | - Changyi Quan
- Department of UrologySecord Affiliated Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
6
|
Chen C, Lin HG, Yao Z, Jiang YL, Yu HJ, Fang J, Li WN. Transcription factor glucocorticoid modulatory element-binding protein 1 promotes hepatocellular carcinoma progression by activating Yes-associate protein 1. World J Gastrointest Oncol 2023; 15:988-1004. [PMID: 37389116 PMCID: PMC10302989 DOI: 10.4251/wjgo.v15.i6.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Glucocorticoid modulatory element-binding protein 1 (GMEB1), which has been identified as a transcription factor, is a protein widely expressed in various tissues. Reportedly, the dysregulation of GMEB1 is linked to the genesis and development of multiple cancers.
AIM To explore GMEB1’s biological functions in hepatocellular carcinoma (HCC) and figuring out the molecular mechanism.
METHODS GMEB1 expression in HCC tissues was analyzed employing the StarBase database. Immunohistochemical staining, Western blotting and quantitative real-time PCR were conducted to examine GMEB1 and Yes-associate protein 1 (YAP1) expression in HCC cells and tissues. Cell counting kit-8 assay, Transwell assay and flow cytometry were utilized to examine HCC cell proliferation, migration, invasion and apoptosis, respectively. The JASPAR database was employed for predicting the binding site of GMEB1 with YAP1 promoter. Dual-luciferase reporter gene assay and chromatin immunoprecipitation-qPCR were conducted to verify the binding relationship of GMEB1 with YAP1 promoter region.
RESULTS GMEB1 was up-regulated in HCC cells and tissues, and GMEB1 expression was correlated to the tumor size and TNM stage of HCC patients. GMEB1 overexpression facilitated HCC cell multiplication, migration, and invasion, and suppressed the apoptosis, whereas GMEB1 knockdown had the opposite effects. GMEB1 bound to YAP1 promoter region and positively regulated YAP1 expression in HCC cells.
CONCLUSION GMEB1 facilitates HCC malignant proliferation and metastasis by promoting the transcription of the YAP1 promoter region.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Hai-Guan Lin
- Department of General Surgery, People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Zheng Yao
- Department of Radiation Oncology, Cancer Hospital of The University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang Province, China
| | - Yi-Ling Jiang
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Hong-Jin Yu
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Jing Fang
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| | - Wei-Na Li
- Department of Medical Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, Zhejiang Province, China
| |
Collapse
|
7
|
Širvinskas D, Steponaitis G, Stakaitis R, Tamašauskas A, Vaitkienė P, Skiriutė D. Antisense lncRNA CHROMR is linked to glioma patient survival. Front Mol Biosci 2023; 10:1101953. [PMID: 36950523 PMCID: PMC10025505 DOI: 10.3389/fmolb.2023.1101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Natural non-coding antisense transcripts (ncNATs) are long non-coding RNAs (lncRNA) transcribed from the opposite strand of a separate protein coding or non-coding gene. As such, ncNATs can increase overlapping mRNA (and the coded protein) levels by stabilizing mRNA, absorbing inhibitory miRNAs and protecting the mRNA from degradation, or conversely decrease mRNA (or protein) levels by directing the mRNA towards degradation or inhibiting protein translation. Recently, growing numbers of ncNATs were shown to be dysregulated in cancerous cells, however, actual impact of ncNATs on cancer progression remains largely unknown. We therefore investigated gene expression levels of natural antisense lncRNA CHROMR (Cholesterol Induced Regulator of Metabolism RNA) and its sense protein coding gene PRKRA (Protein Activator of Interferon Induced Protein Kinase EIF2AK2) in gliomas. Next, we checked CHROMR effect on the survival of glioma patients. Methods: We performed RNA-seq on post-surgical tumor samples from 26 glioma patients, and normal brain tissue. Gene expression in TPM values were extracted for CHROMR and PRKRA genes. These data were validated using the TCGA and GTEx gene expression databases. Results: The gene expression level of ncNAT lncRNA CHROMR in glioma tissue was significantly higher compared to healthy brain tissue, while the expression of its sense counterpart protein coding PRKRA mRNA did not differ between glioma and healthy samples. Survival analysis showed lower survival rates in patients with low mRNA PRKRA/lncRNA CHROMR gene expression ratio compared to high ratio showing a link between lncRNA CHROMR and glioma patient survival prognosis. Conclusion: Here we show that elevated levels of lncRNA CHROMR (i.e., low ratio of mRNA PRKRA/lncRNA CHROMR) is associated with poor prognosis for glioma patients.
Collapse
Affiliation(s)
- Dovydas Širvinskas
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Giedrius Steponaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Stakaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Arimantas Tamašauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Vaitkienė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Paulina Vaitkienė,
| | - Daina Skiriutė
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
8
|
Lin XH, Liu ZY, Zhang DY, Zhang S, Tang WQ, Li DP, Zhang F, Chen RX, Weng SQ, Xue RY, Dong L. circRanGAP1/miR-27b-3p/NRAS Axis may promote the progression of hepatocellular Carcinoma. Exp Hematol Oncol 2022; 11:92. [PMID: 36348379 PMCID: PMC9644583 DOI: 10.1186/s40164-022-00342-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Though circular RNAs (circRNAs) are the key regulators in tumor carcinogenesis, they remain largely unexplored in hepatocellular carcinoma (HCC). METHODS The expression of RanGAP1-derived circRNAs (circ_0063531, circ_0063534, circ_0063513, circ_0063518, circ_0063507, circ_0063723) were evaluated in eight paired HCC and normal tissues, and the correlation between circRanGAP1 (circ_0063531) expression and clinicopathological characteristics in 40 HCC patients was determined. The association between miR-27b-3p and circRanGAP1 or NRAS was predicted using bioinformatics analysis. The expression of circRanGAP1, miR-27b-3p, and NRAS were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The potential oncogenic role of circ-RanGAP1 was assessed using CCK-8, colony formation, transwell assays in vitro, subcutaneous tumor mouse model, vein tail metastatic model, and orthotopically implanted intrahepatic HCC model in vivo. Luciferase reporter and RNA immunoprecipitation (RIP) assays were used to explore the binding site between miR-27b-3p and circ-RanGAP1 or NRAS. Protein expression was detected using western blotting. The localization of miR-27b-3p and circ-RanGAP1 was investigated using fluorescence in situ hybridization (FISH). The level of immune infiltration was assessed by bioinformatics analysis, flow cytometry, and orthotopically implanted intrahepatic HCC models. RESULTS Here, we found elevated circRanGAP1 in the cells and clinical tissues of patients with HCC. Increased circRanGAP1 levels are associated with enlarged tumors and the advanced stage of TNM. CircRanGAP1 promotes the growth, migration, and HCC cell invasion, concurrently with the growth and metastasis of tumors in-vivo. Moreover, circRanGAP1 is mainly located inside the cytoplasm. Mechanistically, circRanGAP1 as an oncogene promotes HCC progression by miR-27b-3p/NRAS/ERK axis, furthermore, affects the infiltration level of tumor-associated macrophages probably by sponging miR-27b-3p. Immune infiltration analysis shows that NRAS is positively correlated with the levels of CD68+ tumor-associated macrophages in HCC samples and that NRAS and CD68 are related to the poor outcome of HCC. CONCLUSION These results reveal that circRanGAP1 is a HCC oncogene that function by the miR-27b-3p/NRAS/ERK axis and regulates the infiltration levels of tumor-associated macrophages by sponging miR-27b-3p. Therefore, circRANGAP1/ NRAS axis may be an important potential treatment target against HCC.
Collapse
Affiliation(s)
- Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Qing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Dong-Ping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Disease, Shanghai, 200032, China
| | - Rong-Xin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ru-Yi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Disease, Shanghai, 200032, China.
| |
Collapse
|
9
|
Hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p as Novel miRNA Biomarkers for Melanoma Progression. Genet Res (Camb) 2022; 2022:5671562. [PMID: 35903462 PMCID: PMC9282999 DOI: 10.1155/2022/5671562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to screen miRNA biomarkers for melanoma progression. Raw melanoma data were downloaded from the Gene Expression Omnibus (GSE34460, GSE35579, GSE18509, and GSE24996) and the Cancer Genome Atlas (TCGA). Then, all differentially expressed miRNAs (DEmiRNAs) between benign vs. primary, metastatic vs. benign, and metastatic vs. primary groups were obtained in the GSE34460 and GSE35579 datasets, and the miRNAs related to disease progression were further screened. Then, the miRNA-gene network was constructed, followed by enrichment, survival, and cluster analyses. Differentially expressed genes (DEGs), tumor-infiltrating immune cells, and tumor mutation burden (TMB) between subtypes were analyzed. miRNAs were verified in the GSE18509 and GSE24996 datasets. A total of 132 and 209 DEmiRNAs were obtained in the GSE34460 and GSE35579 datasets, respectively, and 27 DEmiRNAs related to disease progression were screened. hsa-miR-106b-5p, hsa-miR-27b-3p, and hsa-miR-141-3p had a higher degree and were regulated by numerous genes in the miRNA-gene network. Moreover, four miRNAs were associated with prognosis: hsa-let-7c-5p, hsa-miR-130b-3p, hsa-miR-142-3p, and hsa-miR-509-3p. Furthermore, the bidirectional hierarchical clustering of 27 miRNAs was classified into three subtypes, and TMB and four types of immune cells, including activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells, showed significant differences among the three subtypes. The expression levels of most miRNAs in the GSE18509 and GSE24996 datasets were consistent with those in the training dataset. These miRNAs, including hsa-let-7c-5p, hsa-miR-130b-3p, and hsa-miR-142-3p, and activated dendritic cells, naïve CD4 T cells, M1 macrophages, and plasma cells may play vital roles in the pathogenesis of melanoma.
Collapse
|
10
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
11
|
LncRNA PART1 inhibits glioma proliferation and migration via miR-374b/SALL1 axis. Neurochem Int 2022; 157:105347. [DOI: 10.1016/j.neuint.2022.105347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/22/2022] [Accepted: 04/25/2022] [Indexed: 01/03/2023]
|
12
|
Wang D, Chen Q, Liu J, Liao Y, Jiang Q. Silencing of lncRNA CHRM3-AS2 Expression Exerts Anti-Tumour Effects Against Glioma via Targeting microRNA-370-5p/KLF4. Front Oncol 2022; 12:856381. [PMID: 35359381 PMCID: PMC8962832 DOI: 10.3389/fonc.2022.856381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Long non-coding RNAs (lncRNAs) are key regulators involved in the progression of glioma, and many functional lncRNAs are yet to be identified. This study aimed to explore the function of CHRM3-AS2, a rarely reported lncRNA, in glioma, as well as the underlying mechanisms involving miR-370-5p/KLF4. Methods Differentially expressed RNAs (DERs) were screened from two gene expression profiles of glioblastoma (GBM). Fluorescence in situ hybridisation was performed to determine the subcellular localisation of CHRM3-AS2. Cell viability, colony formation, apoptosis, migration, and invasion were evaluated using cell counting kit-8, colony counts, flow cytometry, wound healing, and Transwell assays, respectively. mRNA and protein expression of specific genes were measured using quantitative real-time polymerase chain reaction and western blotting, respectively. Dual luciferase reporter gene, RNA immunoprecipitation, and RNA pull-down assays were performed to identify the target relationships. A mouse xenograft model was established for in vivo validation. Results CHRM3-AS2 was screened as a prognosis-associated DER in GBM. CHRM3-AS2 expression was up-regulated in glioma cells, and CHRM3-AS2 was localised in the cytoplasm. Silencing of CHRM3-AS2 expression inhibited cell viability, colony formation, migration, and invasion and promoted apoptosis of U251 and SHG-44 cells. In addition, CHRM3-AS2 targeted miR-370-5p/KLF4 in glioma cells. The anti-tumour effect of CHRM3-AS2 silencing was weakened by miR-370-5p silencing or KLF4 overexpression. In vivo, silencing of CHRM3-AS2 expression inhibited tumour growth and Ki67 expression in mice. Overexpression of KLF4 also weakened the anti-tumour effect of CHRM3-AS2 silencing in mice. Conclusions Silencing of CHRM3-AS2 expression inhibited the malignant progression of glioma by regulating miR-370-5p/KLF4 expression.
Collapse
|
13
|
Zeng S, Cui J, Zhang Y, Zheng Z, Meng J, Du J. MicroRNA-15b-5p inhibits tumor necrosis factor alpha-induced proliferation, migration, and extracellular matrix production of airway smooth muscle cells via targeting yes-associated protein 1. Bioengineered 2022; 13:5396-5406. [PMID: 35172671 PMCID: PMC8974076 DOI: 10.1080/21655979.2022.2036890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The excessive proliferation and the deposition of extracellular matrix (ECM) of airway smooth muscle (ASM) cells facilitates airway remodeling in asthma. This study explores how microRNA-15b-5p (miR-15b-5p) functions in modulating the proliferation, migration, inflammatory response, and ECM deposition of ASM cells. MiR-15b-5p and yes-associated protein 1 (YAP1) mRNA expression levels in tumor necrosis factor alpha (TNF-α)-induced ASM cells were, respectively, examined by real-time quantitative polymerase-chain reaction. Besides, the proliferative ability and migrative potential of ASM cells were examined by cell counting kit-8 assay, 5-bromo-2 ‘-deoxyuridine assay, and transwell assays, respectively. Interleukin-6 and interleukin-8 levels in ASM cells were detected by enzyme-linked immunosorbent assay. YAP1, collagen I, and collagen III expressions in ASM cells were detected by Western blot. With dual-luciferase reporter gene assay, the relations between miR-15b-5p and YAP1 3ʹUTR in ASM cells was examined. MiR-15b-5p expression level was reduced in ASM cells treated with TNF-α. MiR-15b-5p repressed TNF-α-initiated growth and migration of ASM cells and also suppressed IL-6 and IL-8 secretion, and inhibited collagen I and collagen III expressions in ASM cells. Furthermore, it was validated that YAP1 was a downstream target of miR-15b-5p in ASM cells. Notably, YAP1 overexpression attenuated the inhibitory effects of miR-15b-5p up-regulation on the proliferation, migration, and inflammatory response, as well as ECM deposition of TNF-α-induced ASM cells. In conclusion, miR-15b-5p/YAP1 axis modulates the growth, migration, inflammatory response, and ECM deposition of ASM cells, thus participating in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Shaolin Zeng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Juan Cui
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Department of Critical Care and Intensive Care Medicine, Xiangzhou District People's Hospital, Xiangyang, Hubei Province, 441100, China
| | - Yunting Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhishui Zheng
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jun Meng
- Department of Pediatrics, Xi'an No. 3 Hospital, Xi'an, Shaanxi Province, China
| | - Junying Du
- Department of Pediatrics, Xi'an No. 3 Hospital, Xi'an, Shaanxi Province, China
| |
Collapse
|
14
|
Chang CY, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributed to Dipyridamole-Induced Impaired Autophagic Flux and Glioma Apoptosis. Int J Mol Sci 2022; 23:ijms23020579. [PMID: 35054765 PMCID: PMC8775759 DOI: 10.3390/ijms23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2359-2525 (ext. 4022)
| |
Collapse
|
15
|
Bao CH, Guo L. Retracted: miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway. Anticancer Agents Med Chem 2022; 22:864-873. [PMID: 34238170 DOI: 10.2174/1871520621666210707095833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022]
Abstract
The article entitled “miR-27b-3p Inhibits Invasion, Migration and Epithelial-mesenchymal Transition in Gastric Cancer by Targeting RUNX1 and Activation of the Hippo Signaling Pathway”, by Chen-Hui Bao and Lin Guo, has been retracted on the request of the Author in light of the changes to the University’s promotion policy, due to which the article needs further content. Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. Kindly see Bentham Science Policy on Article retraction at the link https://benthamscience.com/journals/anti-canceragents-in-medicinal-chemistry/editorial-policies/ Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure, or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.
Collapse
Affiliation(s)
- Chen-Hui Bao
- Department of General surgery, ShengJing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| | - Lin Guo
- Department of General surgery, ShengJing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang City 110004, Liaoning Province, China
| |
Collapse
|
16
|
Deng YW, Shu YG, Sun SL. miR-376a inhibits glioma proliferation and angiogenesis by regulating YAP1/VEGF signalling via targeting of SIRT1. Transl Oncol 2021; 15:101270. [PMID: 34808462 PMCID: PMC8609063 DOI: 10.1016/j.tranon.2021.101270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glioma is the most common cancer in the central nervous system. Previous studies have revealed that the miR-376 family is crucial in tumour development; however, its detailed mechanism in glioma is not clear. METHODS Cellular mRNA or protein levels of miR-376a, SIRT1, VEGF and YAP1 were detected via qRT-PCR or Western blotting. We analysed the proliferation, angiogenesis and migration abilities of glioma cell lines using colony formation, tube formation and Transwell assays. A luciferase assay was performed to determine whether miR-376a could recognize SIRT1 mRNA. Xenograft experiments were performed to analyse the tumorigenesis capacity of glioma cell lines in nude mice. The angiogenesis marker CD31 in xenograft tumours was detected via immunohistochemistry (IHC). RESULTS miR-376a expression was lower in glioma cells than in normal astrocytes. miR-376a mimic inhibited SIRT1, YAP1, and VEGF expression and suppressed the proliferation, migration and angiogenesis abilities of the glioma cell lines LN229 and A172, whereas miR-376a inhibitor exerted the opposite functions. In a luciferase assay, miR-376a inhibited the luciferase activity of WT-SIRT1. SIRT1 overexpression upregulated YAP1 and VEGF in glioma cells and promoted proliferation, migration and angiogenesis. Xenografts with ectopic miR-376a expression exhibited lower volumes and weights and a slower growth curve. Overexpression of miR-376a inhibited YAP1/VEGF signalling and angiogenesis by inhibiting SIRT1 in xenograft tissues. CONCLUSION miR-376a directly targets and inhibits SIRT1 in glioma cells. Downregulation of SIRT1 resulted in decreased YAP1 and VEGF signalling, which led to suppression of glioma cell proliferation, migration and angiogenesis.
Collapse
Affiliation(s)
- Yong-Wen Deng
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefang West Road, Changsha, Hunan 410005, PR China
| | - Yu-Gao Shu
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefang West Road, Changsha, Hunan 410005, PR China
| | - Sheng-Li Sun
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.61, Jiefang West Road, Changsha, Hunan 410005, PR China.
| |
Collapse
|
17
|
Liang D, Zhang Z. MicroRNA-27b-3p inhibits the proliferation and invasion of cutaneous squamous cell carcinoma by targeting EGFR and MMP-13. Oncol Lett 2021; 22:729. [PMID: 34429769 DOI: 10.3892/ol.2021.12990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma is a common malignant tumor. The aim of the present study was to examine the biological function of microRNA (miR)-27b-3p in cutaneous squamous cell carcinoma (CSCC) and its underlying mechanism. The relative expression levels of miR-27b-3p were determined in A-431, Colo-16 and NHEK/SVTERT3-5 cell lines. The regulatory effects of miR-27b-3p on the proliferation of CSCC cells were evaluated using MTT and colony formation assays. Transwell assays were conducted to examine the role of miR-27b-5p in the migratory and invasive abilities of CSCC cells. The levels of EGFR, MMP-13, Akt, phosphorylated (p)-Akt, cyclin D1, N-cadherin (CAD) and E-CAD were detected in CSCC cells using reverse transcription-quantitative PCR and western blot analysis. Binding between miR-27b-3p and the 3'-untranslated region (UTR) of EGFR or MMP-13 was assessed using a dual-luciferase reporter assay. miR-27b-3p was significantly downregulated in CSCC cell lines, compared with the skin keratinocyte cell line. Transfection with a miR-27b-3p mimic significantly reduced the proliferative, migratory and invasive abilities of CSCC cells in vitro. Moreover, miR-27b-3p mimic transfection downregulated the mRNA and protein levels of EGFR, MMP-13, cyclin D1, p-Akt and N-CAD, whilst upregulating E-CAD levels in CSCC cells. miR-27b-3p was found to target the EGFR and MMP-13 3'-UTRs, thus downregulating the expression of these molecules. The inhibition of CSCC proliferation by miR-27b-3p was effectively reversed by EGFR overexpression. Moreover, the inhibitory effect of miR-27b-3p on the migratory and invasive abilities of CSCC cells was abolished by MMP-13 overexpression. In conclusion, miR-27b-3p inhibits the proliferation, migration and invasion of CSCC cells by downregulating the expression of EGFR and MMP-13 and may represent a potential diagnostic marker and therapeutic option for CSCC.
Collapse
Affiliation(s)
- Daning Liang
- Medical Cosmetology Department, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| | - Zhenning Zhang
- Medical Cosmetology Department, University of Chinese Academy of Sciences, Shenzhen Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|