1
|
Li H, Fei M, Zhang Y, Xu Q, Feng R, Cao J, Qu Y, Xiao H. Identify CTBP1-DT as an immunological biomarker that promotes lipid synthesis and apoptosis resistance in KIRC. Gene 2024; 914:148403. [PMID: 38521112 DOI: 10.1016/j.gene.2024.148403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Recently, mounting evidence has highlighted the essential function of the C-terminal binding protein-1 divergent transcript (CTBP1-DT) in malignancies. However, its role in kidney renal clear cell carcinoma (KIRC) remains largely unknown. Our study aimed to identify the potential function of CTBP1-DT in KIRC. RT-qPCR, Kaplan-Meier survival analysis, Cox regression analysis, and nomogram analysis were utilized to determine the expression and effects of CTBP1-DT on survival. The subcellular localization of CTBP1-DT was determined using RNA fluorescence in situ hybridization (FISH). To investigate the functions of CTBP1-DT in regulating KIRC cell proliferation, migration, invasion, lipid synthesis, and apoptosis, we conducted CCK8, EdU, Transwell, and Oil Red O staining and cell apoptosis staining assays. The relationships between CTBP1-DT and the tumor microenvironment were investigated with multiple bioinformatics analysis algorithms and databases, including CYBERSORT, TIMER2, Spearman correlation test, tumor mutation burden (TMB), microsatellite instability (MSI), and immunophenoscore (IPS). According to our results, CTBP1-DT is a lncRNA located in the nucleus that is significantly upregulated in KIRC and is correlated with better clinical outcomes. Downregulating CTBP1-DT inhibited cell viability, migration, invasion, and lipid synthesis but triggered cell apoptosis. Additionally, we explored the potential effect of CTBP1-DT in regulating immune cell infiltration in KIRC and other malignancies. Furthermore, CTBP1-DT could be used to predict the effectiveness of targeted drugs and immune checkpoint inhibitors. In conclusion, we identified CTBP1-DT as a potential immunological biomarker and discovered the potential role of CTBP1-DT in regulating lipid synthesis and apoptosis resistance.
Collapse
Affiliation(s)
- Haolin Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mintian Fei
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qili Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Haibing Xiao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Ren L, Qing X, Wei J, Mo H, Liu Y, Zhi Y, Lu W, Zheng M, Zhang W, Chen Y, Zhang Y, Pan T, Zhong Q, Li R, Zhang X, Ruan X, Yu R, Li J. The DDUP protein encoded by the DNA damage-induced CTBP1-DT lncRNA confers cisplatin resistance in ovarian cancer. Cell Death Dis 2023; 14:568. [PMID: 37633920 PMCID: PMC10460428 DOI: 10.1038/s41419-023-06084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Sustained activation of DNA damage response (DDR) signaling has been demonstrated to play vital role in chemotherapy failure in cancer. However, the mechanism underlying DDR sustaining in cancer cells remains unclear. In the current study, we found that the expression of the DDUP microprotein, encoded by the CTBP1-DT lncRNA, drastically increased in cisplatin-resistant ovarian cancer cells and was inversely correlated to cisplatin-based therapy response. Using a patient-derived human cancer cell model, we observed that DNA damage-induced DDUP foci sustained the RAD18/RAD51C and RAD18/PCNA complexes at the sites of DNA damage, consequently resulting in cisplatin resistance through dual RAD51C-mediated homologous recombination (HR) and proliferating cell nuclear antigen (PCNA)-mediated post-replication repair (PRR) mechanisms. Notably, treatment with an ATR inhibitor disrupted the DDUP/RAD18 interaction and abolished the effect of DDUP on prolonged DNA damage signaling, which resulted in the hypersensitivity of ovarian cancer cells to cisplatin-based therapy in vivo. Altogether, our study provides insights into DDUP-mediated aberrant DDR signaling in cisplatin resistance and describes a potential novel therapeutic approach for the management of platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Liangliang Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Xingrong Qing
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Jihong Wei
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Haixin Mo
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Yuanji Liu
- Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaofeng Zhi
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Mingzhu Zheng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Weijian Zhang
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Yuan Chen
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Yuejiao Zhang
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Taijin Pan
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Qian Zhong
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China
| | - Xiaohong Ruan
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China.
- Department of Gynecology, Jiangmen Central Hospital, Jiangmen, 529030, China.
| | - Ruyuan Yu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Jun Li
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529030, China.
- Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
4
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
5
|
Yu R, Hu Y, Zhang S, Li X, Tang M, Yang M, Wu X, Li Z, Liao X, Xu Y, Li M, Chen S, Qian W, Gong LY, Song L, Li J. LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms. Nucleic Acids Res 2022; 50:8060-8079. [PMID: 35849344 PMCID: PMC9371908 DOI: 10.1093/nar/gkac611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/14/2022] Open
Abstract
Sustaining DNA damage response (DDR) signalling via retention of DDR factors at damaged sites is important for transmitting damage-sensing and repair signals. Herein, we found that DNA damage provoked the association of ribosomes with IRES region in lncRNA CTBP1-DT, which overcame the negative effect of upstream open reading frames (uORFs), and elicited the novel microprotein DNA damage-upregulated protein (DDUP) translation via a cap-independent translation mechanism. Activated ATR kinase-mediated phosphorylation of DDUP induced a drastic 'dense-to-loose' conformational change, which sustained the RAD18/RAD51C and RAD18/PCNA complex at damaged sites and initiated RAD51C-mediated homologous recombination and PCNA-mediated post-replication repair mechanisms. Importantly, treatment with ATR inhibitor abolished the effect of DDUP on chromatin retention of RAD51C and PCNA, thereby leading to hypersensitivity of cancer cells to DNA-damaging chemotherapeutics. Taken together, our results uncover a plausible mechanism underlying the DDR sustaining and might represent an attractive therapeutic strategy in improvement of DNA damage-based anticancer therapies.
Collapse
Affiliation(s)
- Ruyuan Yu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Yameng Hu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Shuxia Zhang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Xincheng Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Miaoling Tang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Meisongzhu Yang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Xingui Wu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Ziwen Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Xinyi Liao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Yingru Xu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Man Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Suwen Chen
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Wanying Qian
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| | - Li-Yun Gong
- Guangdong Provincial Key Laboratory for Genome Stability and Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Jun Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, China.,Department of Biochemistry, Zhongshan school of medicine, Sun Yat-sen University, China
| |
Collapse
|
6
|
Yin X, Gao J, Liu Z, Han M, Ji X, Wang Z, Li Y, He D, Zhang F, Liu Q, Xin T. Mechanisms of long non-coding RNAs in biological phenotypes and ferroptosis of glioma. Front Oncol 2022; 12:941327. [PMID: 35912271 PMCID: PMC9330388 DOI: 10.3389/fonc.2022.941327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Glioma, one of the most common malignant tumors in the nervous system, is characterized by limited treatment, high mortality and poor prognosis. Numerous studies have shown that lncRNAs play an important role in the onset and progression of glioma by acting on various classical signaling pathways of tumors through signaling, trapping, guiding, scaffolding and other functions. LncRNAs contribute to the malignant progression of glioma via proliferation, apoptosis, epithelial-mesenchymal transformation, chemotherapy resistance, ferroptosis and other biological traits. In this paper, relevant lncRNA signaling pathways involved in glioma progression were systematically evaluated, with emphasis placed on the specific molecular mechanism of lncRNAs in the process of ferroptosis, in order to provide a theoretical basis for the application of lncRNAs in the anticancer treatment of glioma.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiajia Gao
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Han
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuming Li
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fenglin Zhang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Liu
- Department of Histology and Embryology, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Tao Xin, ; Qian Liu,
| | - Tao Xin
- Department of Neurosurgery, Shandong Medicine and Health Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Tao Xin, ; Qian Liu,
| |
Collapse
|
7
|
Geng X, Zhang Y, Lin X, Zeng Z, Hu J, Hao L, Xu J, Wang X, Wang H, Li Q. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma. Cell Death Dis 2022; 13:596. [PMID: 35817771 PMCID: PMC9273787 DOI: 10.1038/s41419-022-05056-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/21/2023]
Abstract
Exosome-mediated delivery of circular RNAs (circRNAs) is implicated in cancer progression. However, the role of exosomal circRNAs in the chemotherapy resistance of tumours remains poorly understood. Here we identified a novel circRNA, circWDR62. It was found that circWDR62 expression was upregulated in TMZ-resistant glioma cells and TMZ-resistant glioma cell-derived exosomes compared with their controls by using high-throughput microarray analysis and quantitative real-time polymerase chain reaction, and high circWDR62 expression was associated with poor prognosis of glioma. Functionally, downregulation of circWDR62 expression could significantly inhibit the TMZ resistance and malignant progression of glioma. Further mechanistic studies showed that circWDR62 plays a role by sponging miR-370-3p as a competing endogenous RNA. Rescue experiments confirmed that MGMT is the downstream target of the circWDR62/miR-370-3p axis in glioma. In addition, circWDR62 could be transported between TMZ-resistant and TMZ-sensitive glioma cells via exosomes. Exosomal circWDR62 from TMZ-resistant cells conferred TMZ resistance in recipient sensitive cells while also enhancing the proliferation, migration and invasion of these cells. A series of clinical and in vivo trials corroborated that exosomal circWDR62 could promote TMZ chemoresistance and malignant progression of glioma. Our results demonstrate for the first time that exosome-mediated delivery of circWDR62 can promote TMZ resistance and malignant progression via targeting of the miR-370-3p/MGMT axis in vitro and in vivo in glioma, providing a new therapeutic strategy. Moreover, exosomal circWDR62 in human serum may serve as a promising therapeutic target and prognostic marker for glioma therapy.
Collapse
Affiliation(s)
- Xiuchao Geng
- Taizhou Central Hosiptal (Taizhou University Hospital), Taizhou University, Taizhou, 318000, Zhejiang, China
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Provience, Baoding, 071000, Hebei, China
| | - Xiaomeng Lin
- Departments of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Jun Hu
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China
- Department of Neurosurgery, Affiliated Hospital of Chengde medical University, Chengde, 067000, Hebei, China
| | - Liangchao Hao
- Department of Plastic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang, China
| | - Jianglong Xu
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Provience, Baoding, 071000, Hebei, China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China
| | - Xinjuan Wang
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Hong Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei, China.
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050091, Hebei, China.
| | - Qiang Li
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
8
|
Zhang M, Ma S, Li X, Yu H, Tan Y, He J, Wei X, Ma J. Long non‑coding RNA CTBP1‑AS2 upregulates USP22 to promote pancreatic carcinoma progression by sponging miR‑141‑3p. Mol Med Rep 2022; 25:86. [PMID: 35039872 PMCID: PMC8809116 DOI: 10.3892/mmr.2022.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) feature prominently in pancreatic carcinoma progression. The present study aimed to clarify the biological functions, clinical significance and underlying mechanism of lncRNA CTBP1 antisense RNA 2 (CTBP1-AS2) in pancreatic carcinoma. Reverse transcription-quantitative PCR was performed to assess the expression levels of CTBP1-AS2, microRNA (miR)-141-3p and ubiquitin-specific protease 22 (USP22) mRNA in pancreatic carcinoma tissues and cell lines. Western blotting was used to examine USP22 protein expression in pancreatic carcinoma cell lines. Loss-of-function experiments were used to analyze the regulatory effects of CTBP1-AS2 on proliferation, apoptosis, migration and invasion of pancreatic carcinoma cells. Dual-luciferase reporter assay was used to examine the binding relationship between CTBP1-AS2 and miR-141-3p, as well as between miR-141-3p and USP22. It was demonstrated that CTBP1-AS2 expression was markedly increased in pancreatic carcinoma tissues and cell lines. High CTBP1-AS2 expression was associated with advanced clinical stage and lymph node metastasis of patients. Functional experiments confirmed that knocking down CTBP1-AS2 significantly inhibited pancreatic carcinoma cell proliferation, migration and invasion, and promoted cell apoptosis. In terms of mechanism, it was found that CTBP1-AS2 adsorbed miR-141-3p as a molecular sponge to upregulate the expression level of USP22. In conclusion, lncRNA CTBP1-AS2 may be involved in pancreatic carcinoma progression by regulating miR-141-3p and USP22 expressions; in addition, CTBP1-AS2 may be a diagnostic biomarker and treatment target for pancreatic carcinoma.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Songbo Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Xuzhao Li
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Henghai Yu
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Yizheng Tan
- Department of Hepatopancreatobiliary Surgery, The 2nd Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jun He
- Department of Hepatopancreatobiliary Surgery, The 2nd Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Xiaoping Wei
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| | - Junming Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Hui Autonomous Region, Yinchuan 750021, P.R. China
| |
Collapse
|
9
|
EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2021; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
|
10
|
Yang J, Zhang X, Cao J, Xu P, Chen Z, Wang S, Li B, Zhang L, Xie L, Fang L, Xu Z. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis 2021; 12:910. [PMID: 34611143 PMCID: PMC8492724 DOI: 10.1038/s41419-021-04216-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer remains the third leading cause of cancer-related mortality worldwide. Emerging evidence has shown that circular RNAs (circRNAs) play a critical regulatory role in the occurrence and development of various cancers through sponging miRNAs or acting as RNA-binding protein (RBP) sponges. We found that circUBE2Q2 was significantly upregulated in GC tissues and cell lines. Knockdown of circUBE2Q2 inhibited proliferation, migration, invasion, and glycolysis, and increased autophagy in vitro. In addition, knockdown of circUBE2Q2 inhibited GC tumorigenicity and metastasis potential in vivo. A series of experiments were performed to confirm that circUBE2Q2 regulates GC progression via the circUBE2Q2-miR-370-3p-STAT3 axis and promotes tumor metastasis through exosomal communication. Further in vivo experiments confirmed that, combination treatment of circUBE2Q2 knocking down and STAT3 inhibitor has synergistic effects on the gastric cancer growth inhibition, which provides a possibility to enhance the sensitivity of targeted drugs to gastric cancer through targeting circUBE2Q2. Our findings revealed that circUBE2Q2 may serve as a new proliferation-promoting factor and prognostic marker in gastric cancer.
Collapse
Affiliation(s)
- Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zetian Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
12
|
Nie J, Feng Y, Wang H, Lian XY, Li YF. Long Non-Coding RNA SNHG6 Supports Glioma Progression Through Upregulation of Notch1, Sox2, and EMT. Front Cell Dev Biol 2021; 9:707906. [PMID: 34485294 PMCID: PMC8414414 DOI: 10.3389/fcell.2021.707906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Gliomas, particularly the advanced grade glioblastomas, have poor 5-year survival rates and worse outcomes. lncRNAs and EMT have been extensively studied in gliomas but the disease progression remains poorly understood. SNHG6 has been shown to affect glioma cell proliferation but its effect on EMT of glioma cells along with its effect on disease progression is not known. We screened four glioma cell lines; H4, A172, U87MG, and SW088 and grouped them based on high vs. low SNHG6 expression. Transfections with SNHG6 specific siRNA resulted in induction of apoptosis of high SNHG6 expressing A172 and U87MG cells. This was accompanied by inhibition of EMT and downregulation of EMT-modulating factor Notch1, β-catenin activity and the cancer stem cell marker Sox2. The regulation was not found to be reciprocal as silencing of Notch1 and Sox2 failed to affect SNHG6 levels. The levels of SNHG6 and Notch1 were also found elevated in Grade IV glioma patients (n = 4) relative to Grade II glioma patients (n = 5). These results identify SNHG6 and Notch1 as valid targets for glioma therapy.
Collapse
Affiliation(s)
- Jing Nie
- Department of Pediatrics, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yao Feng
- Department of Acupuncture, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - He Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Xiao-Yu Lian
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Ying-Fu Li
- Department of Neurosurgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
13
|
An Insight into the microRNAs Associated with Arteriovenous and Cavernous Malformations of the Brain. Cells 2021; 10:cells10061373. [PMID: 34199498 PMCID: PMC8227573 DOI: 10.3390/cells10061373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.
Collapse
|