1
|
Ouatahar L, Bannink A, Zentek J, Amon T, Deng J, Hempel S, Janke D, Beukes P, van der Weerden T, Krol D, Lanigan GJ, Amon B. An integral assessment of the impact of diet and manure management on whole-farm greenhouse gas and nitrogen emissions in dairy cattle production systems using process-based models. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:79-90. [PMID: 38996622 DOI: 10.1016/j.wasman.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Feed management decisions are crucial in mitigating greenhouse gas (GHG) and nitrogen (N) emissions from ruminant farming systems. However, assessing the downstream impact of diet on emissions in dairy production systems is complex, due to the multifunctional relationships between a variety of distinct but interconnected sources such as animals, housing, manure storage, and soil. Therefore, there is a need for an integral assessment of the direct and indirect GHG and N emissions that considers the underlying processes of carbon (C), N and their drivers within the system. Here we show the relevance of using a cascade of process-based (PB) models, such as Dutch Tier 3 and (Manure)-DNDC (Denitrification-Decomposition) models, for capturing the downstream influence of diet on whole-farm emissions in two contrasting case study dairy farms: a confinement system in Germany and a pasture-based system in New Zealand. Considerable variation was found in emissions on a per hectare and per head basis, and across different farm components and categories of animals. Moreover, the confinement system had a farm C emission of 1.01 kg CO2-eq kg-1 fat and protein corrected milk (FPCM), and a farm N emission of 0.0300 kg N kg-1 FPCM. In contrast, the pasture-based system had a lower farm C and N emission averaging 0.82 kg CO2-eq kg-1 FPCM and 0.006 kg N kg-1 FPCM, respectively over the 4-year period. The results demonstrate how inputs and outputs could be made compatible and exchangeable across the PB models for quantifying dietary effects on whole-farm GHG and N emissions.
Collapse
Affiliation(s)
- Latifa Ouatahar
- Institute for Animal Hygiene and Animal Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Robert-von-Ostertag 7-13, 14163 Berlin, Germany; Department of Technology Assessment and Substance Cycles, Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Environment, Soils and Land-Use, Teagasc, Johnstown Castle, Co. Wexford. Y35 Y521, Ireland.
| | - André Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700AH, Wageningen, Netherlands
| | - Jürgen Zentek
- Institute for Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - Thomas Amon
- Institute for Animal Hygiene and Animal Health, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Robert-von-Ostertag 7-13, 14163 Berlin, Germany; Department of Sensors and Modelling, Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Jia Deng
- Earth Systems Research Center, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH, USA; DNDC Applications Research and Training, LLC, Durham, NH, 03824, USA
| | - Sabrina Hempel
- Department of Sensors and Modelling, Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - David Janke
- Department of Sensors and Modelling, Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Pierre Beukes
- DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand
| | - Tony van der Weerden
- AgResearch Ltd, Invermay Agricultural Centre, Puddle Alley, Mosgiel 9053, New Zealand
| | - Dominika Krol
- Environment, Soils and Land-Use, Teagasc, Johnstown Castle, Co. Wexford. Y35 Y521, Ireland
| | - Gary J Lanigan
- Environment, Soils and Land-Use, Teagasc, Johnstown Castle, Co. Wexford. Y35 Y521, Ireland
| | - Barbara Amon
- Department of Technology Assessment and Substance Cycles, Leibniz Institute for Agricultural Engineering and Bioeconomy - ATB, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Faculty of Civil Engineering, Architecture and Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
2
|
Petersen SO, Ma C, Hilgert JE, Mjöfors K, Sefeedpari P, Amon B, Aarnink A, Francó B, Dragoni F, Groenestein K, Gyldenkærne S, Herrmann C, Hutchings NJ, Kristensen IS, Liu J, Olesen JE, Rodhe L. In-vitro method and model to estimate methane emissions from liquid manure management on pig and dairy farms in four countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120233. [PMID: 38330838 DOI: 10.1016/j.jenvman.2024.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Methane (CH4) emissions from manure management on livestock farms are a key source of greenhouse gas emissions in some regions and for some production systems, and the opportunities for mitigation may be significant if emissions can be adequately documented. We investigated a method for estimating CH4 emissions from liquid manure (slurry) that is based on anaerobic incubation of slurry collected from commercial farms. Methane production rates were used to derive a parameter of the Arrhenius temperature response function, lnA', representing the CH4 production potential of the slurry at the time of sampling. Results were used for parameterization of an empirical model to estimate annual emissions with daily time steps, where CH4 emissions from individual sources (barns, outside storage tanks) can be calculated separately. A monitoring program was conducted in four countries, i.e., Denmark, Sweden, Germany and the Netherlands, during a 12-month period where slurry was sampled to represent barn and outside storage on finishing pig and dairy farms. Across the four countries, lnA' was higher in pig slurry compared to cattle slurry (p < 0.01), and higher in slurry from barns compared to outside storage (p < 0.01). In a separate evaluation of the incubation method, in-vitro CH4 production rates were comparable with in-situ emissions. The results indicate that lnA' in barns increases with slurry age, probably due to growth or adaptation of the methanogenic microbial community. Using lnA' values determined experimentally, empirical models with daily time steps were constructed for finishing pig and dairy farms and used for scenario analyses. Annual emissions from pig slurry were predicted to be 2.5 times higher than those from cattle slurry. Changing the frequency of slurry export from the barn on the model pig farm from 40 to 7 d intervals reduced total annual CH4 emissions by 46 %; this effect would be much less on cattle farms with natural ventilation. In a scenario with cattle slurry, the empirical model was compared with the current IPCC methodology. The seasonal dynamics were less pronounced, and annual CH4 emissions were lower than with the current methodology, which calls for further investigations. Country-specific models for individual animal categories and point sources could be a tool for assessing CH4 emissions and mitigation potentials at farm level.
Collapse
Affiliation(s)
| | - Chun Ma
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Julio E Hilgert
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Paria Sefeedpari
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | - Barbara Amon
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany; University of Zielona Góra, Faculty of Civil Engineering, Architecture and Environmental Engineering, Zielona Góra, Poland
| | - André Aarnink
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | | | - Federico Dragoni
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Karin Groenestein
- Wageningen Livestock Research, Wageningen University and Research, the Netherlands
| | | | - Christiane Herrmann
- Leibniz Institute of Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | | | - Ib S Kristensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Jing Liu
- BPC Instruments, Lund, Sweden; Lund University, Lund, Sweden
| | - Jørgen E Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Lena Rodhe
- RISE Research Institutes of Sweden, Uppsala, Sweden
| |
Collapse
|
3
|
Effects of rumen undegradable protein sources on nitrous oxide, methane and ammonia emission from the manure of feedlot-finished cattle. Sci Rep 2022; 12:9166. [PMID: 35655074 PMCID: PMC9163071 DOI: 10.1038/s41598-022-13100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
The effects of sources of rumen undegradable protein (RUP) in diets on methane (CH4), nitrous oxide (N2O) and ammonia (NH3) emissions from the manure of feedlot-finished cattle were evaluated. We hypothesized that the use of different RUP sources in diets would reduce N loss via urine and contribute to reduced N2O, CH4 and NH3 emissions to the environment. Nellore cattle received different diets (18 animals/treatment), including soybean meal (SM, RDP source), by-pass soybean meal (BSM, RUP source) and corn gluten meal (CGM, RUP source). The protein source did not affect the N and C concentration in urine, C concentration in feces, and N balance (P > 0.05). The RUP sources resulted in a higher N2O emission than the RDP source (P = 0.030), while BSM resulted in a higher N2O emission than CGM (P = 0.038) (SM = 633, BSM = 2521, and CGM = 1153 g ha−2 N–N2O); however, there were no differences in CH4 and NH3 emission (P > 0.05). In conclusion, the use of RUP in diets did not affect N excretion of beef cattle or CH4 and NH3 emission from manure, but increased N2O emission from the manure.
Collapse
|
4
|
Effects of folic acid and cobalt sulphate supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Holstein calves. Br J Nutr 2022; 127:1313-1319. [PMID: 34155966 DOI: 10.1017/s000711452100221x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n 40) were randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0·11 mg Co/kg DM in diets containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.
Collapse
|
5
|
Sokolov VK, VanderZaag A, Habtewold J, Dunfield K, Wagner-Riddle C, Venkiteswaran JJ, Crolla A, Gordon R. Dairy manure acidification reduces CH4 emissions over short and long-term. ENVIRONMENTAL TECHNOLOGY 2021; 42:2797-2804. [PMID: 31920167 DOI: 10.1080/09593330.2020.1714744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
Acidification with sulphuric acid and cleaning residual manure in tanks are promising practices for reducing methane (CH4), which is a potent greenhouse gas. To date, no data are available on CH4 reductions from acidifying only residual manure (rather than all manure). Moreover, long-term effects of manure acidification (i.e. inoculating ability of previously acidified residual manure in the subsequent storages) are not known. To address these gaps, fresh manure (FM; 150 mL) combined with treated or untreated inoculum (30 mL) were anaerobically incubated at 17°C, 20°C, and 23°C for 116 d. Acidified treatments, regardless of location of acid addition, reduced CH4 production by 81% at 17°C, 78% at 20°C, and 19% at 23°C compared to the control (untreated FM and untreated inoculum). To test long-term acidification effects, FM was inoculated with manure that had been acidified 6-months prior. This created comparable CH4 production to FM with no inoculum and reduced CH4 production by 99% at 17°C and 20°C, and 49% at 23°C compared to the control. Results indicate that residual slurries of acidified manure become poor inoculants in subsequent storage, hence manure acidification has a long-term treatment effect in reducing CH4 production. This could reduce how often acidification is needed in dairy manure tanks and also increasing its cost-effectiveness for farmers.
Collapse
Affiliation(s)
- Vera K Sokolov
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Andrew VanderZaag
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Jemaneh Habtewold
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Kari Dunfield
- School of Environmental Science, University of Guelph, Guelph, Canada
| | | | - Jason J Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Canada
| | - Anna Crolla
- Innovation Engineering and Program Delivery, Ontario Ministry of Agriculture, Food, and Rural Affairs, Kemptville, Canada
| | - Robert Gordon
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Canada
| |
Collapse
|
6
|
Celis-Alvarez MD, López-González F, Arriaga-Jordán CM, Robles-Jiménez LE, González-Ronquillo M. Feeding Forage Mixtures of Ryegrass ( Lolium spp.) with Clover ( Trifolium spp.) Supplemented with Local Feed Diets to Reduce Enteric Methane Emission Efficiency in Small-Scale Dairy Systems: A Simulated Study. Animals (Basel) 2021; 11:ani11040946. [PMID: 33801732 PMCID: PMC8067253 DOI: 10.3390/ani11040946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present study simulated the effects of different dairy cow diets based on local feeding strategies on enteric methane (CH4) emissions and surpluses of crude protein (CP) in small-scale dairy systems (SSDS). Our study evaluated five scenarios of supplementation (S): without supplementation (control diet), meaning no supplements were provided, only pasture (S1); pasture supplemented with 4.5 kg dry matter (DM)/cow/day of commercial concentrate (CC) (S2); supplemented with 200 g DM/kg per milk produced of CC (S3); supplemented with ground maize grains and wet distiller brewery grains (S4); and S4 plus maize silage (S5). In addition, two pasture managements (cut-and-carry versus grazing) and two varieties of legumes (red clover vs. white clover) were considered. The results suggest that methane emissions and large nitrogen surpluses in the diet are affected by the type of supplementation given to cows, in addition to the management and chemical composition of the pastures offered. In SSDS, it is possible to formulate diets with local inputs to reduce excess nutrients and dependence on external inputs, increasing feed efficiency and reducing costs (excess of CP in the diet) and CH4 emissions. Abstract In cattle, greenhouse gas (GHG) emissions and nutrient balance are influenced by factors such as diet composition, intake, and digestibility. This study evaluated CH4 emissions and surpluses of crude protein, using five simulated scenarios of supplementation in small-scale dairy systems (SSDS). In addition, two pasture managements (cut-and-carry versus grazing) and two varieties of legumes (red clover vs. white clover) were considered. The diets were tested considering similar milk yield and chemical composition; CH4 emission was estimated using Tier-2 methodology from the Intergovernmental Panel on Climate Change (IPCC), and the data were analyzed in a completely randomized 5 × 2 × 2 factorial design. Differences (p < 0.05) were found in predicted CH4 emissions per kg of milk produced (g kg−1 FCM 3.5%). The lowest predicted CH4 emissions were found for S3 and S4 as well as for pastures containing white clover. Lower dietary surpluses of CP (p < 0.05) were observed for the control diet (1320 g CP/d), followed by S5 (1793 g CP/d), compared with S2 (2175 g CP/d), as well as in cut-and-carry management with red clover. A significant correlation (p < 0.001) was observed between dry matter intake and CH4 emissions (g−1 and per kg of milk produced). It is concluded that the environmental impact of formulating diets from local inputs (S3 and S4) can be reduced by making them more efficient in terms of methane kg−1 of milk in SSDS.
Collapse
Affiliation(s)
- Maria Danaee Celis-Alvarez
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, No. 100 Instituto Literario, Toluca 50000, Estado de México, Mexico; (M.D.C.-A.); (C.M.A.-J.)
| | - Felipe López-González
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, No. 100 Instituto Literario, Toluca 50000, Estado de México, Mexico; (M.D.C.-A.); (C.M.A.-J.)
- Correspondence: (F.L.-G.); (M.G.-R.)
| | - Carlos Manuel Arriaga-Jordán
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, No. 100 Instituto Literario, Toluca 50000, Estado de México, Mexico; (M.D.C.-A.); (C.M.A.-J.)
| | - Lizbeth E. Robles-Jiménez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, No. 100 Instituto Literario 100, Col. Centro, Toluca 50000, Estado de México, Mexico;
| | - Manuel González-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, No. 100 Instituto Literario 100, Col. Centro, Toluca 50000, Estado de México, Mexico;
- Correspondence: (F.L.-G.); (M.G.-R.)
| |
Collapse
|
7
|
Rennie TJ, Grant BB, Gordon RJ, Smith WN, VanderZaag AC. Regional climate influences manure temperature and methane emissions - A pan-Canadian modelling assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142278. [PMID: 33182183 DOI: 10.1016/j.scitotenv.2020.142278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study explores the variation of liquid manure temperature (Tm) and CH4 emissions associated with contrasting regional climates, inter-annual weather variation, and manure storage emptying. As a case-study, six regions across Canada were used, spanning 11°32' latitude and 58°30' longitude. Annual average air temperatures ranged from 3.9 °C (prairie climate) to 10.5 °C (maritime climate), with an overall average of 6.6 °C. A model predicted Tm over 30 years, using daily weather (1971-2000), and over one "normal" year (30-year average weather). Modelled Tm was then used in Manure-DNDC to model daily CH4 emissions. Two manure storage emptying scenarios were simulated: (i) early spring and autumn, or (ii) late spring and autumn. Regional differences were evident as average Tm ranged from 8.9 °C to 14.6 °C across the six locations. Early removal of stored manure led to warmer Tm in all regions, and the most warming occurred in colder regions. Regional climate had a large effect on CH4 emissions (e.g. 1.8× greater in the pacific maritime and great lakes regions than the prairie region). Inter-annual weather variability led to substantial variation in inter-annual CH4 emissions, with coefficient of variation being as high as 20%. The large inter-annual range suggests that field measurements of CH4 emissions need to compare the weather during measurements to historical normals. Early manure storage emptying reduced CH4 emissions (vs late removal) in some regions but had little effect or the opposite effect in other regions. Overall, the results from this modelling study suggest: i) Tm differs substantially from air temperature at all locations, ii) accurate estimates of manure storage CH4 emissions require region-specific calculations using Tm (e.g. in emission inventories), iii) field measurements of CH4 emissions need to consider weather conditions relative to climate normal, and iv) emission mitigation practices will require region-specific measurements to determine impacts.
Collapse
Affiliation(s)
- Timothy J Rennie
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - Brian B Grant
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | | | - Ward N Smith
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | | |
Collapse
|
8
|
Greenhouse gas and ammonia emissions from stored manure from beef cattle supplemented 3-nitrooxypropanol and monensin to reduce enteric methane emissions. Sci Rep 2020; 10:19310. [PMID: 33168849 PMCID: PMC7653922 DOI: 10.1038/s41598-020-75236-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2020] [Indexed: 11/10/2022] Open
Abstract
The investigative material 3-nitrooxypropanol (3-NOP) can reduce enteric methane emissions from beef cattle. North American beef cattle are often supplemented the drug monensin to improve feed digestibility. Residual and confounding effects of these additives on manure greenhouse gas (GHG) emissions are unknown. This research tested whether manure carbon and nitrogen, and GHG and ammonia emissions, differed from cattle fed a typical finishing diet and 3-NOP [125–200 mg kg−1 dry matter (DM) feed], or both 3-NOP (125–200 mg kg−1 DM) and monensin (33 mg kg−1 DM) together, compared to a control (no supplements) when manure was stockpiled or composted for 202 days. Consistent with other studies, cumulative GHGs (except nitrous oxide) and ammonia emissions were higher from composted compared to stockpiled manure (all P < 0.01). Dry matter, total carbon and total nitrogen mass balance estimates, and cumulative GHG and ammonia emissions, from stored manure were not affected by 3-NOP or monensin. During the current experiment, supplementing beef cattle with 3-NOP did not significantly affect manure GHG or NH3 emissions during storage under the tested management conditions, suggesting supplementing cattle with 3-NOP does not have residual effects on manure decomposition as estimated using total carbon and nitrogen losses and GHG emissions.
Collapse
|
9
|
Sokolov V, VanderZaag A, Habtewold J, Dunfield K, Tambong JT, Wagner-Riddle C, Venkiteswaran JJ, Gordon R. Acidification of Residual Manure in Liquid Dairy Manure Storages and Its Effect on Greenhouse Gas Emissions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.568648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Naranjo A, Johnson A, Rossow H, Kebreab E. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years. J Dairy Sci 2020; 103:3760-3773. [PMID: 32037166 DOI: 10.3168/jds.2019-16576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/11/2019] [Indexed: 11/19/2022]
Abstract
Food production including dairy has been associated with environmental impacts and resource use that has been steadily improving when adjusted per unit of product. The objective of this study was to conduct a cradle-to-farm gate environmental impact analysis and resource inventory of the California dairy production system to estimate the change in greenhouse gas emissions and water and land use over the 50-yr period between 1964 and 2014. Using a life cycle assessment according to international standards and the Food and Agriculture Organization of the United Nations guidelines, we analyzed contributions from dairy production in California to global environmental change. Production of 1 kg of energy- and protein-corrected milk (ECM) in California emitted 1.12 to 1.16 kg of CO2 equivalents (CO2e) in 2014 compared with 2.11 kg of CO2e in 1964, a reduction of 45.0 to 46.9% over the last 50 yr, depending on the model used. Greater reductions in enteric methane intensity (i.e., methane production per kilogram of ECM) were observed (reduction of 54.1 to 55.7%) compared with manure GHG (reduction of 8.73 to 11.9%) in 2014 compared with 1964. This was mainly because manure management in the state relies on lagoons for storage, which has a greater methane conversion factor than solid manure storage. Water use intensity was reduced by 88.1 to 89.9%, with water reductions of 88.7 to 90.5% in crop production, 55.3 to 59.2% in housing and milking, and 52.4 to 54% in free water intake. Improved crop genetics and management have contributed to large efficiencies in water utilization. Land requirements for crop production were reduced by 89.4 to 89.7% in 2014 compared with 1964. This was mainly due to dramatic increases in crop yields in the last 50 yr. The increases in milk production per cow through genetic improvements and better nutrition and animal care have contributed to reductions in greenhouse gas emissions and land and water usage when calculated per unit of production (intensity) basis.
Collapse
Affiliation(s)
- A Naranjo
- Department of Animal Science, University of California, Davis 95616
| | - A Johnson
- School of Veterinary Medicine, University of California, Davis 95616
| | - H Rossow
- School of Veterinary Medicine, University of California, Davis 95616
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616.
| |
Collapse
|
11
|
Habtewold J, Gordon R, Sokolov V, VanderZaag A, Wagner-Riddle C, Dunfield K. Reduction in Methane Emissions From Acidified Dairy Slurry Is Related to Inhibition of Methanosarcina Species. Front Microbiol 2018; 9:2806. [PMID: 30515146 PMCID: PMC6255968 DOI: 10.3389/fmicb.2018.02806] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/31/2018] [Indexed: 12/04/2022] Open
Abstract
Liquid dairy manure treated with sulfuric acid was stored in duplicate pilot-scale storage tanks for 120 days with continuous monitoring of CH4 emissions and concurrent examination of changes in the structure of bacterial and methanogenic communities. Methane emissions were monitored at the site using laser-based Trace Gas Analyzer whereas quantitative real-time polymerase chain reaction and massively parallel sequencing were employed to study bacterial and methanogenic communities using 16S rRNA and methyl-coenzyme M Reductase A (mcrA) genes/transcripts, respectively. When compared with untreated slurries, acidification resulted in 69–84% reductions of cumulative CH4 emissions. The abundance, activity, and proportion of bacterial communities did not vary with manure acidification. However, the abundance and activity of methanogens (as estimated from mcrA gene and transcript copies, respectively) in acidified slurries were reduced by 6 and 20%, respectively. Up to 21% reduction in mcrA transcript/gene ratios were also detected in acidified slurries. Regardless of treatment, Methanocorpusculum predominated archaeal 16S rRNA and mcrA gene and transcript libraries. The proportion of Methanosarcina, which is the most metabolically-diverse methanogen, was the significant discriminant feature between acidified and untreated slurries. In acidified slurries, the relative proportions of Methanosarcina were ≤ 10%, whereas in untreated slurries, it represented up to 24 and 53% of the mcrA gene and transcript libraries, respectively. The low proportions of Methanosarcina in acidified slurries coincided with the reductions in CH4 emissions. The results suggest that reduction of CH4 missions achieved by acidification was due to an inhibition of the growth and activity of Methanosarcina species.
Collapse
Affiliation(s)
- Jemaneh Habtewold
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Robert Gordon
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Vera Sokolov
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | | - Kari Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Habtewold J, Gordon R, Voroney P, Sokolov V, VanderZaag A, Wagner-Riddle C, Dunfield K. Sodium Persulfate and Potassium Permanganate Inhibit Methanogens and Methanogenesis in Stored Liquid Dairy Manure. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:786-794. [PMID: 30025063 DOI: 10.2134/jeq2018.01.0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stored liquid dairy manure is a hotspot for methane (CH) emission, thus effective mitigation strategies are required. We assessed sodium persulfate (NaSO), potassium permanganate (KMnO), and sodium hypochlorite (NaOCl) for impacts on the abundance of microbial communities and CH production in liquid dairy manure. Liquid dairy manure treated with different rates (1, 3, 6, and 9 g or mL L slurry) of these chemicals or their combinations were incubated under anoxic conditions at 22.5 ± 1.3°C for 120 d. Untreated and sodium 2-bromoethanesulfonate (BES)-treated manures were included as negative and positive controls, respectively, whereas sulfuric acid (HSO)-treated manure was used as a reference. Quantitative real-time polymerase chain reaction was used to quantify the abundances of bacteria and methanogens on Days 0, 60, and 120. Headspace CH/CO ratios were used as a proxy to determine CH production. Unlike bacterial abundance, methanogen abundance and CH/CO ratios varied with treatments. Addition of 1 to 9 g L slurry of NaSO and KMnO reduced methanogen abundance (up to ∼28%) and peak CH/CO ratios (up to 92-fold). Except at the lowest rate, chemical combinations also reduced the abundance of methanogens (up to ∼17%) and CH/CO ratios (up to ninefold), although no impacts were observed when 3% NaOCl was used alone. With slurry acidification, the ratios reduced up to twofold, whereas methanogen abundance was unaffected. Results suggest that NaSO and KMnO may offer alternative options to reduce CH emission from stored liquid dairy manure, but this warrants further assessment at larger scales for environmental impacts and characteristics of the treated manure.
Collapse
|
13
|
Hristov A, Kebreab E, Niu M, Oh J, Bannink A, Bayat A, Boland T, Brito A, Casper D, Crompton L, Dijkstra J, Eugène M, Garnsworthy P, Haque N, Hellwing A, Huhtanen P, Kreuzer M, Kuhla B, Lund P, Madsen J, Martin C, Moate P, Muetzel S, Muñoz C, Peiren N, Powell J, Reynolds C, Schwarm A, Shingfield K, Storlien T, Weisbjerg M, Yáñez-Ruiz D, Yu Z. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J Dairy Sci 2018; 101:6655-6674. [DOI: 10.3168/jds.2017-13536] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 03/25/2018] [Indexed: 01/21/2023]
|
14
|
Petersen SO. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation. J Dairy Sci 2018; 101:6642-6654. [DOI: 10.3168/jds.2017-13301] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022]
|
15
|
Appuhamy J, Moraes L, Wagner-Riddle C, Casper D, Kebreab E. Predicting manure volatile solid output of lactating dairy cows. J Dairy Sci 2018; 101:820-829. [DOI: 10.3168/jds.2017-12813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022]
|
16
|
Vida E, Tedesco DEA. The carbon footprint of integrated milk production and renewable energy systems - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1286-1294. [PMID: 28793397 DOI: 10.1016/j.scitotenv.2017.07.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/23/2017] [Accepted: 07/30/2017] [Indexed: 06/07/2023]
Abstract
Dairy farms have been widely acknowledged as a source of greenhouse gas (GHG) emissions. The need for a more environmentally friendly milk production system will likely be important going forward. Whereas methane (CH4) enteric emissions can only be reduced to a limited extent, CH4 manure emissions can be reduced by implementing mitigation strategies, such as the use of an anaerobic digestion (AD). Furthermore, implementing a photovoltaic (PV) electricity generation system could mitigate the fossil fuels used to cover the electrical needs of farms. In the present study to detect the main environmental hotspots of milk production, a Life Cycle Assessment was adopted to build the Life Cycle Inventory according to ISO 14040 and 14044 in a conventional dairy farm (1368 animals) provided by AD and PV systems. The Intergovernmental Panel on Climate Change tiered approach was adopted to associate the level of emission with each item in the life cycle inventory. The functional unit refers to 1kg of fat-and-protein-corrected-milk (FPCM). In addition to milk products, other important co-products need to be considered: meat and renewable energy production from AD and PV systems. A physical allocation was applied to attribute GHG emissions among milk and meat products. Renewable energy production from AD and PV systems was considered, discounting carbon credits due to lower CH4 manure emissions and to the minor exploitation of fossil energy. The CF of this farm scenario was 1.11kg CO2eq/kg FPCM. The inclusion of AD allowed for the reduction of GHG emissions from milk production by 0.26kg CO2eq/kg FPCM. The PV system contribution was negligible due to the small dimensions of the technology. The results obtained in this study confirm that integrating milk production with other co-products, originated from more efficient manure management, is a successful strategy to mitigate the environmental impact of dairy production.
Collapse
Affiliation(s)
- Elisabetta Vida
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | | |
Collapse
|