3
|
Wang C, Wei S, Xu B, Hao L, Su W, Jin M, Wang Y. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow's performance, immune status and gut microbiota. Microb Biotechnol 2020; 14:614-627. [PMID: 33026173 PMCID: PMC7936319 DOI: 10.1111/1751-7915.13672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Fermented feed (FF) is widely applied to improve swine performance. However, the understandings of the effects of FF on the immune status and gut microbiota of lactating sows and whether probiotics are the effective composition of FF are still limited. The present study aimed to investigate the performance, immune status and gut microbiota of lactating sows fed with a basal diet supplemented with Bacillus subtilis and Enterococcus faecium co-fermented feed (FF), with the probiotic combination (PRO) of B. subtilis and E. faecium and control diet (CON) as controls. Compared with the CON group, FF group remarkably improved the average daily feed intake of sows and the weight gain of piglets, while significantly decreased the backfat loss, constipation rate of sows and diarrhoea incidence of piglets. The yield and quality of milk of sows in FF group were improved. Besides, faecal acetate and butyrate were promoted in FF group. Additionally, FF increased the level of IgG, IgM and IL-10 and decreased the concentration of TNF-α in serum. Furthermore, FF reduced the abundance of Enterobacteriaceae and increased the level of Lactobacillus and Succiniclasticum, which were remarkably associated with growth performance and serum immune parameters. Accordingly, microbial metabolic functions including DNA repair and recombination proteins, glycolysis and gluconeogenesis, mismatch repair and d-alanine metabolism were significantly upregulated, while amino acid metabolism was downregulated in FF group. Overall, the beneficial effects of FF were superior to PRO treatment. Altogether, administration of FF during lactation improved the performance and immune status, and modulated gut microbiota of sows. Probiotics are not the only one effective compound of FF.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Siyu Wei
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Bocheng Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Lihong Hao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Weifa Su
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China.,College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|