1
|
Anacleto J, Lento C, Sarpe V, Maqsood A, Mehrazma B, Schriemer D, Wilson DJ. Apparatus for Automated Continuous Hydrogen Deuterium Exchange Mass Spectrometry Measurements from Milliseconds to Hours. Anal Chem 2023; 95:4421-4428. [PMID: 36880265 PMCID: PMC9996604 DOI: 10.1021/acs.analchem.2c05003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a rapidly growing technique for protein characterization in industry and academia, complementing the "static" picture provided by classical structural biology with information about the dynamic structural changes that accompany biological function. Conventional hydrogen deuterium exchange experiments, carried out on commercially available systems, typically collect 4-5 exchange timepoints on a timescale ranging from tens of seconds to hours using a workflow that can require 24 h or more of continuous data collection for triplicate measurements. A small number of groups have developed setups for millisecond timescale HDX, allowing for the characterization of dynamic shifts in weakly structured or disordered regions of proteins. This capability is particularly important given the central role that weakly ordered protein regions often play in protein function and pathogenesis. In this work, we introduce a new continuous flow injection setup for time-resolved HDX-MS (CFI-TRESI-HDX) that allows automated, continuous or discrete labeling time measurements from milliseconds to hours. The device is composed almost entirely of "off-the-shelf" LC components and can acquire an essentially unlimited number of timepoints with substantially reduced runtimes compared to conventional systems.
Collapse
Affiliation(s)
- Joseph Anacleto
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology, Calgary, Alberta T2N 4N1, Canada
| | - Ayesha Maqsood
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Banafsheh Mehrazma
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - David Schriemer
- Department of Biochemistry and Molecular Biology, Calgary, Alberta T2N 4N1, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
2
|
Zach T, Geyer F, Kiendl B, Mößeler J, Nguyen O, Schmidpeter T, Schuster P, Nagel C, Schatzschneider U. Electrospray Mass Spectrometry to Study Combinatorial iClick Reactions and Multiplexed Kinetics of [Ru(N 3)(N∧N)(terpy)]PF 6 with Alkynes of Different Steric and Electronic Demand. Inorg Chem 2023; 62:2982-2993. [PMID: 36745056 DOI: 10.1021/acs.inorgchem.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a combinatorial approach, a family of ruthenium(II) azido complexes [Ru(N3)(N∧N)(terpy)]PF6 with terpy = 2,2':6',2″-terpyridine and N∧N as a bidentate chelator derived from 2,2'-biypridine and its 4,4'-disubstituted derivatives, 2,2'-bipyrimidine, and 1,10-phenanthroline were reacted with different internal and terminal alkynes to give access to a total of 7 × 7 = 49 triazolato complexes in a room-temperature catalyst-free iClick reaction. The reactants were mixed in a repurposed high-performance liquid chromatography (HPLC) autosampler, and the reaction progress was monitored by direct injection into an electrospray mass spectrometer. The ratio of the peak intensities of [Ru(N3)(N∧N)(terpy)]+ and [Ru(triazolato)(N∧N)(terpy)]+ was converted to a colored heat map for facile visual inspection of the conversion ratio. By automated multiple injections of the reaction mixture in fixed time intervals and plotting peak intensities over reaction time, pseudo-first-order rate constants were easily determined. Finally, nonoverlapping isotope patterns of the azido starting materials and triazolato products enabled multiplexed parallel determination of rate constants for four different ruthenium(II) azido complexes from a single sample vial, thereby reducing experiment time by 75%.
Collapse
Affiliation(s)
- Tristan Zach
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Florian Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Benjamin Kiendl
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Jan Mößeler
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Olivier Nguyen
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Thomas Schmidpeter
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Patrick Schuster
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074Würzburg, Germany
| |
Collapse
|
3
|
Oganesyan I, Lento C, Tandon A, Wilson DJ. Conformational Dynamics of α-Synuclein during the Interaction with Phospholipid Nanodiscs by Millisecond Hydrogen-Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1169-1179. [PMID: 33784451 DOI: 10.1021/jasms.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Both normal and pathological functions of α-synuclein (αSN), an abundant protein in the central and peripheral nervous system, have been linked to its interaction with membrane lipid bilayers. The ability to characterize structural transitions of αSN upon membrane complexation will clarify molecular mechanisms associated with αSN-linked pathologies, including Parkinson's disease (PD), multiple systems atrophy, and other synucleinopathies. In this work, time-resolved electrospray ionization hydrogen/deuterium exchange mass spectrometry (TRESI-HDX-MS) was employed to acquire a detailed picture of αSN's conformational transitions as it undergoes complexation with nanodisc membrane mimics with different headgroup charges (zwitterionic DMPC and negative POPG). Using this approach, αSN interactions with DMPC nanodiscs were shown to be rapid exchanging and to have little impact on the αSN conformational ensemble. Interactions with nanodiscs containing lipids known to promote amyloidogenesis (e.g., POPG), on the other hand, were observed to induce substantial and specific changes in the αSN conformational ensemble. Ultimately, we identify a region corresponding residues 19-28 and 45-57 of the αSN sequence that is uniquely impacted by interactions with "amyloidogenic" lipid membranes, supporting the existing "broken-helix" model for α-synuclein/membrane interactions, but do not detect a "helical extension" that is also thought to play a role in αSN aggregation.
Collapse
Affiliation(s)
- Irina Oganesyan
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Cristina Lento
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
| | - Anurag Tandon
- Department of Medicine, University of Toronto, Toronto M5S 1A1, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University, Toronto M3J 1P3, Canada
| |
Collapse
|
4
|
Szymkowicz L, Lento C, Wilson DJ. Impact of Cardiolipin and Phosphatidylcholine Interactions on the Conformational Ensemble of Cytochrome c. Biochemistry 2019; 58:3617-3626. [DOI: 10.1021/acs.biochem.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisa Szymkowicz
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
5
|
Marrella SA, Brown KA, Mansouri-Noori F, Porat J, Wilson DJ, Bayfield MA. An interdomain bridge influences RNA binding of the human La protein. J Biol Chem 2018; 294:1529-1540. [PMID: 30530494 DOI: 10.1074/jbc.ra118.003995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
La proteins are RNA chaperones that perform various functions depending on distinct RNA-binding modes and their subcellular localization. In the nucleus, they help process UUU-3'OH-tailed nascent RNA polymerase III transcripts, such as pre-tRNAs, whereas in the cytoplasm they contribute to translation of poly(A)-tailed mRNAs. La accumulation in the nucleus and cytoplasm is controlled by several trafficking elements, including a canonical nuclear localization signal in the extreme C terminus and a nuclear retention element (NRE) in the RNA recognition motif 2 (RRM2) domain. Previous findings indicate that cytoplasmic export of La due to mutation of the NRE can be suppressed by mutations in RRM1, but the mechanism by which the RRM1 and RRM2 domains functionally cooperate is poorly understood. In this work, we use electromobility shift assays (EMSA) to show that mutations in the NRE and RRM1 affect binding of human La to pre-tRNAs but not UUU-3'OH or poly(A) sequences, and we present compensatory mutagenesis data supporting a direct interaction between the RRM1 and RRM2 domains. Moreover, we use collision-induced unfolding and time-resolved hydrogen-deuterium exchange MS analyses to study the conformational dynamics that occur when this interaction is intact or disrupted. Our results suggest that the intracellular distribution of La may be linked to its RNA-binding modes and provide the first evidence for a direct protein-protein interdomain interaction in La proteins.
Collapse
Affiliation(s)
- Stefano A Marrella
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Kerene A Brown
- Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada; Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Farnaz Mansouri-Noori
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jennifer Porat
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada; Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada; Research in Mass Spectrometry, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Mark A Bayfield
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centres for Research in Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
6
|
Cheng S, Wu Q, Xiao H, Chen H. Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:2338-2344. [DOI: 10.1021/acs.analchem.6b03975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si Cheng
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| | - Qiuhua Wu
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
- Department
of Chemistry, College of Science, Agricultural University of Hebei, Baoding 071001, China
| | - He Xiao
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| | - Hao Chen
- Center
for Intelligent Chemical Instrumentation, Department of Chemistry
and Biochemistry, Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States,
| |
Collapse
|
7
|
Lento C, Wilson DJ. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. Analyst 2017; 142:1640-1653. [DOI: 10.1039/c7an00338b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many important chemical and biochemical phenomena proceed on sub-second time scales.
Collapse
Affiliation(s)
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Centre for Research of Biomolecular Interactions
| |
Collapse
|
8
|
Brown KA, Wilson DJ. Bottom-up hydrogen deuterium exchange mass spectrometry: data analysis and interpretation. Analyst 2017; 142:2874-2886. [DOI: 10.1039/c7an00662d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tutorial review on the fundamentals of HDX-MS with an emphasis on data analysis and interpretation.
Collapse
Affiliation(s)
- Kerene A. Brown
- Department of Chemistry
- York University
- Toronto
- Canada
- Center for Research in Mass Spectrometry
| | - Derek J. Wilson
- Department of Chemistry
- York University
- Toronto
- Canada
- Center for Research in Mass Spectrometry
| |
Collapse
|
9
|
Liu Z, Schaap KS, Ballemans L, de Zanger R, de Blois E, Rohde M, Oehlke E. Measurement of reaction kinetics of [177Lu]Lu-DOTA-TATE using a microfluidic system. Dalton Trans 2017; 46:14669-14676. [DOI: 10.1039/c7dt01830d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design and evaluation of a microfluidic system that allowed the determination of Arrhenius parameters for the formation of [177Lu]Lu-DOTA-TATE using clinical radiolabeling conditions.
Collapse
Affiliation(s)
- Z. Liu
- Delft University of Technology
- Department Radiation Science and Technology
- 2629JB Delft
- The Netherlands
| | - K. S. Schaap
- Delft University of Technology
- Department Radiation Science and Technology
- 2629JB Delft
- The Netherlands
| | - L. Ballemans
- Delft University of Technology
- Department Radiation Science and Technology
- 2629JB Delft
- The Netherlands
| | - R. de Zanger
- Erasmus MC
- Department of Radiology and Nuclear Medicine
- 3015CN Rotterdam
- The Netherlands
| | - E. de Blois
- Erasmus MC
- Department of Radiology and Nuclear Medicine
- 3015CN Rotterdam
- The Netherlands
| | - M. Rohde
- Delft University of Technology
- Department Radiation Science and Technology
- 2629JB Delft
- The Netherlands
| | - E. Oehlke
- Delft University of Technology
- Department Radiation Science and Technology
- 2629JB Delft
- The Netherlands
| |
Collapse
|
10
|
Brown KA, Sharifi S, Hussain R, Donaldson L, Bayfield MA, Wilson DJ. Distinct Dynamic Modes Enable the Engagement of Dissimilar Ligands in a Promiscuous Atypical RNA Recognition Motif. Biochemistry 2016; 55:7141-7150. [PMID: 27959512 DOI: 10.1021/acs.biochem.6b00995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational dynamics play a critical role in ligand binding, often conferring divergent activities and specificities even in species with highly similar ground-state structures. Here, we employ time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX) to characterize the changes in dynamics that accompany oligonucleotide binding in the atypical RNA recognition motif (RRM2) in the C-terminal domain (CTD) of human La protein. Using this approach, which is uniquely capable of probing changes in the structure and dynamics of weakly ordered regions of proteins, we reveal that binding of RRM2 to a model 23-mer single-stranded RNA and binding of RRM2 to structured IRES domain IV of the hepatitis C viral (HCV) RNA are driven by fundamentally different dynamic processes. In particular, binding of the single-stranded RNA induces helical "unwinding" in a region of the CTD previously hypothesized to play an important role in La and La-related protein-associated RNA remodeling, while the same region becomes less dynamic upon engagement with the double-stranded HCV RNA. Binding of double-stranded RNA also involves less penetration into the RRM2 binding pocket and more engagement with the unstructured C-terminus of the La CTD. The complementarity between TRESI-HDX and Δδ nuclear magnetic resonance measurements for ligand binding analysis is also explored.
Collapse
Affiliation(s)
- Kerene A Brown
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
| | - Samel Sharifi
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Rawaa Hussain
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Logan Donaldson
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Mass Spectrometry, York University , Toronto, ON M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions, York University , Toronto, ON M3J 1P3, Canada
| |
Collapse
|
11
|
Cong Y, Katipamula S, Trader CD, Orton DJ, Geng T, Baker ES, Kelly RT. Mass spectrometry-based monitoring of millisecond protein-ligand binding dynamics using an automated microfluidic platform. LAB ON A CHIP 2016; 16:1544-8. [PMID: 27009517 PMCID: PMC4846533 DOI: 10.1039/c6lc00183a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Characterizing protein-ligand binding dynamics is crucial for understanding protein function and for developing new therapeutic agents. We present a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and an integrated electrospray ionization source for mass spectrometry-based monitoring of protein-ligand binding dynamics. This platform offers many advantages, including solution-based binding, label-free detection, automated operation, rapid mixing, and low sample consumption.
Collapse
Affiliation(s)
- Yongzheng Cong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Shanta Katipamula
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Cameron D Trader
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| |
Collapse
|
12
|
Lento C, Ferraro M, Wilson D, Audette GF. HDX-MS and deletion analysis of the type 4 secretion system protein TraF from the Escherichia coli F plasmid. FEBS Lett 2016; 590:376-86. [PMID: 26785931 DOI: 10.1002/1873-3468.12066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
Abstract
Conjugative DNA transfer by the F-plasmid is achieved through a type IV secretion system (T4SS) encoded within the plasmid's transfer region; TraF is one of several F-T4SS proteins essential for F-pilus assembly. In order to identify regions of the protein important for TraF function, a series of deletion mutants were assessed for their ability to recover conjugative transfer in a traF knockout. Interestingly, modification of any region of TraF abolishes pilus synthesis, resulting in a loss of rescue of conjugative function. Dynamic analysis of TraF by time-resolved hydrogen-deuterium exchange revealed that the C-terminal region containing the predicted thioredoxin-like domain is quite structured, while the N-terminal region, predicted to interact with TraH in the intact F-T4SS, was more dynamic.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Michele Ferraro
- Department of Chemistry, York University, Toronto, ON, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, Canada.,Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry, York University, Toronto, ON, Canada
| | - Gerald F Audette
- Department of Chemistry, York University, Toronto, ON, Canada.,Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Peters KC, Comi TJ, Perry RH. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1494-1501. [PMID: 26091888 DOI: 10.1007/s13361-015-1171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM (n) -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM (n) -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM (1) -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment.
Collapse
Affiliation(s)
- Kevin C Peters
- Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
14
|
Takano Y, Kikkawa S, Suzuki T, Kohno JY. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision. J Phys Chem B 2015; 119:7062-7. [DOI: 10.1021/acs.jpcb.5b03233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuuka Takano
- Department
of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Shigenori Kikkawa
- Department
of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Tomoko Suzuki
- Department
of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Jun-ya Kohno
- Department
of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
15
|
Liuni P, Deng B, Wilson DJ. Comparing equilibrium and kinetic protein unfolding using time-resolved electrospray-coupled ion mobility mass spectrometry. Analyst 2015; 140:6973-9. [DOI: 10.1039/c5an00843c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We apply a new hyphenated method, TRESI-IMS-MS, to compare equilibrium and kinetic unfolding intermediates of cytochrome c.
Collapse
Affiliation(s)
- Peter Liuni
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| | - Bin Deng
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| | - Derek J. Wilson
- Department of Chemistry and Centre for Research in Mass Spectrometry
- York University
- Toronto
- Canada
| |
Collapse
|