1
|
Study of Catalytic Properties of the HoxMg1-xAl2O4 Modified HZSM-5 Zeolite in Conversion of Methanol to C2-C4 Alkenes and p-Xylene. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.4.15115.725-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selective conversion of methanol to C2-C4 alkenes and p-xylene is one of the appealing chemical routes. Currently, there are no effective catalysts for the co-production of C2-C4 alkenes and p-xylene from methanol. To date, modified medium-pore ZSM-5 zeolites are considered one of the excellent candidates for the development of selective catalysts for the conversion of methanol to lower alkenes and aromatic hydrocarbons. In this paper, nanosized (30-33nm) powders of HoхMg1-хAl2O4 spinel structure were obtained by the method of combustion of nitrate solutions of aluminium, magnesium, holmium, diethylmalonate and hydrazine monohydrate with the further calcination of nanopowders at 1000 °C. Obtained nanopowders used in the preparation of a solid-phase catalytic composition of HoхMg1-хAl2O4-HZSM-5. Various physico-chemical properties of the catalytic composition were investigated using X-ray diffraction (XRD), pyridine adsorption (BİO-RAD FTS 3000 MX) and low-temperature nitrogen adsorption (BET) techniques. The textural properties and acidity of the catalysts were altered by adjusting the nanopowder concentration (1.0-5.0 wt.%) in the catalytic composition. The conversion of methanol in the presence of the catalytic compositions was carried out in flow-type fixed-bed catalytic reactor at 400 °C, in the presence of nitrogen carrier gas with 1.0 h-1 flow rate. A correlation between the selectivity to C2-C4 alkenes and p-xylene with a ratio of Lewis (L) and Brønsted (B) acid sites and the volume of the catalyst pore, the amount of the modifier in the catalytic system has been established. As the amount of HoхMg1-хAl2O4 nanopowder increases, the ratio of B/L acid sites and the volume of the catalyst pore decrease, which play a significant role in the increase of the selectivity to C2-C4 alkenes and p-xylene. Maximum yield of C2-C4 alkenes (31.6%) and selectivity to p-xylene (80.5%) is achieved on a catalytic composition containing 5.0 wt.% HoxMg1-xAl2O4. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
2
|
Preparation and Performance of the Lipid Hydrodeoxygenation of a Nickel-Induced Graphene/HZSM-5 Catalyst. Catalysts 2022. [DOI: 10.3390/catal12060627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Graphene-encapsulated nickel nanoclusters are a feasible strategy to inhibit the nickel deactivation of nickel-based catalysts. In this work, graphene-encapsulated catalysts (Ni@C/HZSM-5) were prepared by a compression forming process, using pseudo-boehmite, Al2O3, and ZrO2 as binders. The pseudo-boehmite was gradually transformed from amorphous to crystalline alumina at high temperatures, which destroyed the nucleation of Ni@C. In contrast, the crystal-stabilized zirconia was more favorable for the nucleation of Ni@C. The extensive dispersion of alumina on the surface of HZSM-5 covers the acid sites of HZSM-5. In contrast, when zirconia was used as the binder, the binder existed in the form of the direct aggregation of ~100 nm zirconia spheres; this distribution form reduced better the damage of the binder to the acid site of the catalyst. Furthermore, the particle size of Ni crystals in the graphene-encapsulated catalysts decreased significantly (mostly <11 nm), and no evident agglomeration of nickel particles appeared. It was found that the stabilization of the metal interface delayed, to an extent, the accumulation rate of carbon deposits and, thus, postponed the deactivation of the acid sites. After 8 h of continuous reaction, the conversion of the traditional catalyst Ni/Z5+Zr dropped significantly to 60%. In contrast, the conversion of Ni@C catalysts prepared with ZrO2 remained above 90%. The regeneration test shows that air roasting could effectively remove carbon deposits and restore the catalyst activity.
Collapse
|
3
|
Enhancing Methane Conversion by Modification of Zn States in Co-Reaction of MTA. Catalysts 2021. [DOI: 10.3390/catal11121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Limited by harsh reaction conditions, the activation and utilization of methane were regarded as holy grail reaction. Co-reaction with methanol, successfully realizing mild conversion below 450 °C, provides practical strategies for methane conversion on metal-loaded ZSM-5 zeolites, especially for highly efficient Zn loaded ones. However, Zn species, regarded as active acid sites on the zeolite, have not been sufficiently studied. In this paper, Zn-loaded ZSM-5 zeolite was prepared, and Zn was modified by capacity, loading strategy, and treating atmosphere. Apparent methane conversion achieves 15.3% for 1.0Zn/Z-H2 (16.8% as calculated net conversion) with a significantly reduced loading of 1.0 wt.% against deactivation, which is among the best within related zeolite materials. Besides, compared to the MTA reaction, the addition of methane promotes the high-valued aromatic production from 49.4% to 54.8%, and inhibits the C10+ production from 7.8% to 3.6%. Notably, Zn2+ is found to be another active site different from the reported ZnOH+. Medium strong acid sites are proved to be beneficial for methane activation. This work provides suggestions for the modification of the Zn active site, in order to prepare highly efficient catalysts for methane activation and BTX production in co-reaction with methanol.
Collapse
|