1
|
Forrestall K, Pringle ES, Sands D, Duguay BA, Farewell B, Woldemariam T, Falzarano D, Pottie I, McCormick C, Darvesh S. A phenothiazine urea derivative broadly inhibits coronavirus replication via viral protease inhibition. Antiviral Res 2023; 220:105758. [PMID: 38008194 DOI: 10.1016/j.antiviral.2023.105758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Coronavirus (CoV) replication requires efficient cleavage of viral polyproteins into an array of non-structural proteins involved in viral replication, organelle formation, viral RNA synthesis, and host shutoff. Human CoVs (HCoVs) encode two viral cysteine proteases, main protease (Mpro) and papain-like protease (PLpro), that mediate polyprotein cleavage. Using a structure-guided approach, a phenothiazine urea derivative that inhibits both SARS-CoV-2 Mpro and PLpro protease activity was identified. In silico docking studies also predicted the binding of the phenothiazine urea to the active sites of structurally similar Mpro and PLpro proteases from distantly related alphacoronavirus, HCoV-229 E (229 E), and the betacoronavirus, HCoV-OC43 (OC43). The lead phenothiazine urea derivative displayed broad antiviral activity against all three HCoVs tested in cellulo. It was further demonstrated that the compound inhibited 229 E and OC43 at an early stage of viral replication, with diminished formation of viral replication organelles, and the RNAs that are made within them, as expected following viral protease inhibition. These observations suggest that the phenothiazine urea derivative readily inhibits viral replication and may broadly inhibit proteases of diverse coronaviruses.
Collapse
Affiliation(s)
- Katrina Forrestall
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Eric S Pringle
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Dane Sands
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Brett A Duguay
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Brett Farewell
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | | | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), 120 Veterinary Road, Saskatoon, SK, Canada, S7N 5E3; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Ian Pottie
- Department of Chemistry & Physics, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada, B3M 2J6; Department of Chemistry, Saint Mary's University, 923 Robbie Street, Halifax, NS, Canada, B3H 3C3
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2
| | - Sultan Darvesh
- Department of Medicine (Geriatric Medicine and Neurology) and Medical Neuroscience, Dalhousie University, 5850 College Street, Halifax, NS, Canada, B3H 4R2; Department of Chemistry & Physics, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, Canada, B3M 2J6.
| |
Collapse
|
2
|
Liang T, Xiao S, Wu Z, Lv X, Liu S, Hu M, Li G, Li P, Ma X. Phenothiazines Inhibit SARS-CoV-2 Entry through Targeting Spike Protein. Viruses 2023; 15:1666. [PMID: 37632009 PMCID: PMC10458444 DOI: 10.3390/v15081666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and continues to threaten humanity due to the persistent emergence of new variants. Therefore, developing more effective and broad-spectrum therapeutic and prophylactic drugs against infection by SARS-CoV-2 and its variants, as well as future emerging CoVs, is urgently needed. In this study, we screened several US FDA-approved drugs and identified phenothiazine derivatives with the ability to potently inhibit the infection of pseudotyped SARS-CoV-2 and distinct variants of concern (VOCs), including B.1.617.2 (Delta) and currently circulating Omicron sublineages XBB and BQ.1.1, as well as pseudotyped SARS-CoV and MERS-CoV. Mechanistic studies suggested that phenothiazines predominantly inhibited SARS-CoV-2 pseudovirus (PsV) infection at the early stage and potentially bound to the spike (S) protein of SARS-CoV-2, which may prevent the proteolytic cleavage of the S protein, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that phenothiazines can serve as a potential broad-spectrum therapeutic drug for the treatment of SARS-CoV-2 infection as well as the infection of future emerging human coronaviruses (HCoVs).
Collapse
Affiliation(s)
- Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Xi Lv
- School of Medicine, South China University of Technology, Guangzhou 510006, China;
| | - Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Guojie Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (T.L.); (S.X.); (S.L.); (M.H.); (G.L.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Al-Otaibi JS, Mary YS, Mary S, Trivedi R, Chakraborty B, Yadav R, Celik I, Soman S. DFT and MD investigations of the biomolecules of phenothiazine derivatives: interactions with gold and water molecules and investigations in search of effective drug for SARS-CoV-2. J Biomol Struct Dyn 2022:1-12. [PMID: 35470781 DOI: 10.1080/07391102.2022.2068649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Theoretical analyses of two phenothiazine derivatives, 10-[3-(dimethylamino)-2-methylpropyl]phenothiazine-2-carbonitrile (CYM) and 2-[4-[3-(2-chlorophenothiazin-10-yl)propyl]piperazin-1-yl]ethanol (PAZ) are reported using density functional theory (DFT) and molecular dynamics (MD) simulations. Spectroscopic studies, different electronic and chemical parameters are predicted. Red and yellow in electrostatic potential plot is in rings and oxygen atom in PAZ and C≡N and rings in CYM are sensitive to nucleophilic attacks. The blue in hydrogen atoms refer to electrophilic attack in both PAZ and CYM. Stability of the protein-ligand complex formed with these derivatives and angiotensin-converting enzyme 2 (ACE2) was investigated using MD simulation. Radius of gyration of C-alpha atom of 6VW1 displayed the conformational convergence toward a compact structure leading to stable 6VW1-ligand complex which are also in agreement with root mean square fluctuation (RMSF) values. Localized area predicts reactive sites for Au and H2O molecules interaction with these compounds for further practical applications. Charge density is localized on both molecules and also tries to move toward Au-Au dimer and water molecule and such they are expected to contribute to the sensing performance. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Ravi Trivedi
- Department of Physics, Indian Institute of Technology, Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Sreejit Soman
- Stemskills Research and Education Lab Private Limited, Faridabad, Hariyana, India
| |
Collapse
|