1
|
Wang J, Liang K, Chen L, Su X, Liao D, Yu J, He J. Unveiling the stealthy tactics: mycoplasma's immune evasion strategies. Front Cell Infect Microbiol 2023; 13:1247182. [PMID: 37719671 PMCID: PMC10502178 DOI: 10.3389/fcimb.2023.1247182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Mycoplasmas, the smallest known self-replicating organisms, possess a simple structure, lack a cell wall, and have limited metabolic pathways. They are responsible for causing acute or chronic infections in humans and animals, with a significant number of species exhibiting pathogenicity. Although the innate and adaptive immune responses can effectively combat this pathogen, mycoplasmas are capable of persisting in the host, indicating that the immune system fails to eliminate them completely. Recent studies have shed light on the intricate and sophisticated defense mechanisms developed by mycoplasmas during their long-term co-evolution with the host. These evasion strategies encompass various tactics, including invasion, biofilm formation, and modulation of immune responses, such as inhibition of immune cell activity, suppression of immune cell function, and resistance against immune molecules. Additionally, antigen variation and molecular mimicry are also crucial immune evasion strategies. This review comprehensively summarizes the evasion mechanisms employed by mycoplasmas, providing valuable insights into the pathogenesis of mycoplasma infections.
Collapse
Affiliation(s)
- Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jianwei Yu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Lan J, Zhang R, Li P, Chen J, Xie Z, Jiang S. Identification of a Type-Specific Epitope in the ORF2 Protein of Duck Astrovirus Type 1. Animals (Basel) 2019; 9:ani9121069. [PMID: 31810309 PMCID: PMC6940979 DOI: 10.3390/ani9121069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Duck astrovirus type 1 (DAstV-1) infection constitutes a cause of viral hepatitis in ducklings and little is known about the B-cell epitope of DAstV-1. In this study, using a monoclonal antibody (mAb) 3D2 against ORF2 protein of DAstV-1, a highly conserved linear B-cell epitope of 454 STTESA459 in DAstV-1 ORF2 was identified. The mAb 3D2 showed no neutralizing activity to DAstV-1 and had no cross-reactivity with other DAstV serotypes. Abstract Duck astrovirus type 1 (DAstV-1) infection constitutes a cause of viral hepatitis in ducklings and little is known about the B-cell epitope of DAstV-1. In this study, a monoclonal antibody (mAb) 3D2 against open reading frame 2 (ORF2) protein of DAstV-1 was used to identify the possible epitope in the four serotypes of DAstV. The mAb 3D2 showed no neutralization activity to DAstV-1, and reacted with the conserved linear B-cell epitopes of 454STTESA459 in DAstV-1 ORF2 protein. Sequence analysis, dot blot assay, and cross-reactivity test indicated that the epitope peptide was highly conserved in DAstV-1 sequence and mAb 3D2 had no cross-reactivity with other DAstV serotypes. To the best of our knowledge, this is the first report about identification of the specific conserved linear B-cell epitope of DAstV-1, which will facilitate the serologic diagnosis of DAstV-1 infection.
Collapse
Affiliation(s)
- Jingjing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Ruihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Pengfei Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
| | - Junhao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- College of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
3
|
Deng X, Zhu Y, Dai P, Yu M, Chen L, Zhu C, You X, Li L, Zeng Y. Three polypeptides screened from phage display random peptide library may be the receptor polypeptide of Mycoplasma genitalium adhesion protein. Microb Pathog 2018; 120:140-146. [DOI: 10.1016/j.micpath.2018.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/17/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
|
4
|
Wang M, Wei Y, Yu W, Wang L, Zhai L, Li X, Wang X, Zhang H, Feng Z, Yu L, Yu Y, Ma J, Cui Y. Identification of a conserved linear B-cell epitope in the Staphylococcus aureus GapC protein. Microb Pathog 2018. [PMID: 29522802 DOI: 10.1016/j.micpath.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The GapC protein of Staphylococcus aureus (S. aureus) is a surface protein that is highly conserved among Staphylococcus strains, and it can induce protective humoral immune responses. However, B-cell epitopes in S. aureus GapC have not been reported. In this study, we generated a monoclonal antibody (mAb2A9) targeting S. aureus GapC. Through a passive immunity test, mAb2A9 was shown to partially protect mice against S. aureus infection. We screened the motif 236PVATGSLTE243 that is recognized by mAb2A9 using a phage-display system. The motif sequence exactly matched amino acids 236-243 of the S. aureus GapC protein. Then, we identified the key amino acids in the motif using site-directed mutagenesis. Site-directed mutagenesis revealed that residues P236, G240, L242, and T243 formed the core of the 236PVATGSLT243 motif. In addition, this epitope was proven to be located on the surface of S. aureus, and it induced a protective humoral immune response against S. aureus infection in immunized mice. Overall, our results characterized a conserved B-cell epitope, which will be an attractive target for designing effective epitope-based vaccines against S. aureus infection.
Collapse
Affiliation(s)
- Mengyao Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuhua Wei
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wei Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lu Zhai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xiaoting Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xintong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hua Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Liquan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yongzhong Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China; College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
5
|
Zhang L, Zhou X, Fan Z, Tang W, Chen L, Dai J, Wei Y, Zhang J, Yang X, Yang X, Liu D, Yu L, Zhang H, Wu Z, Yu Y, Sun H, Cui Y. Identification of a conserved B-cell epitope on the GapC protein of Streptococcus dysgalactiae. Microb Pathog 2015; 83-84:23-8. [DOI: 10.1016/j.micpath.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 04/28/2015] [Indexed: 11/15/2022]
|
6
|
Construction and evaluation of a fluorescence-based live attenuated Escherichia coli delivery system for generating oral vaccine candidate. Appl Microbiol Biotechnol 2015; 99:4005-18. [PMID: 25567512 DOI: 10.1007/s00253-014-6332-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
Enter toxigenic Escherichia coli (ETEC) is a major pathogen of swine industry that can have a substantial impact on morbidity and mortality. Therefore, it is necessary to develop effective vaccines for the prevention of ETEC infection. Live attenuated bacteria delivery system are effective tools for mucosal immunization. The purpose of this study was to construct a novel delivery system that can present the LTR192G-STb fusion protein as oral vaccine candidate. Firstly, the PRPL-mKate2 fluorescent cassette was inserted into the genome (yaiT pseudogene) of an attenuated E. coli by homologous recombination methods to construct the delivery system O142(yaiT::PRPL-mKate2). Secondly, the oral vaccine O142(yaiT:: LT192-STb) (ER-B) was derived for replacing the PRPL-mKate2 by LT192-STb fusion gene, and then it was tested for its feasibility as oral vaccine candidate. Subsequently, BALB/c mice were orogastrically immunized with ER-B. Results showed that mice orally immunized with ER-B produced high levels of specific IgA and IgG antibodies. The induced antibodies demonstrated neutralizing effects to enter toxins LT and STb. In addition, results of cellular immune responses showed that stimulation index values of immunized mice were significantly higher than the control group (P < 0.05) and with a marked shift towards Th 2 immunity. These data indicated that the recombinant E. coli ER-B could be a valuable candidate of future vaccines against ETEC infection.
Collapse
|