1
|
Ding Y, Nan Y, Qiu Y, Niu D, Stanford K, Holley R, McAllister T, Narváez‐Bravo C. Use of a phage cocktail to reduce the numbers of seven
Escherichia coli
strains belonging to different
STEC
serogroups applied to fresh produce and seeds. J Food Saf 2023. [DOI: 10.1111/jfs.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yiran Ding
- Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Yuchen Nan
- Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Yang Qiu
- Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Dongyan Niu
- Ecosystem & Public Health University of Calgary Calgary Alberta Canada
| | - Kim Stanford
- Department of Biological Sciences University of Lethbridge Lethbridge Canada
| | - Rick Holley
- Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Tim McAllister
- Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Ecosystem & Public Health University of Calgary Calgary Alberta Canada
- Department of Biological Sciences University of Lethbridge Lethbridge Canada
- Agriculture and Agri‐Food Canada Lethbridge Research and Development Centre Lethbridge Alberta Canada
| | | |
Collapse
|
2
|
Liao YT, Zhang Y, Salvador A, Harden LA, Wu VCH. Characterization of a T4-like Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing Escherichia coli O45 Contaminated on Mung Bean Seeds. Microbiol Spectr 2022; 10:e0222021. [PMID: 35107386 PMCID: PMC8809338 DOI: 10.1128/spectrum.02220-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023] Open
Abstract
Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| |
Collapse
|
3
|
Zajančkauskaitė A, Noreika A, Rutkienė R, Meškys R, Kaliniene L. Low-Temperature Virus vB_EcoM_VR26 Shows Potential in Biocontrol of STEC O26:H11. Foods 2021; 10:1500. [PMID: 34203373 PMCID: PMC8307508 DOI: 10.3390/foods10071500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 °C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 °C, and ~3 log10 at 4 °C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 °C. No survivors were detected after 4 and 6 h at 8 and 4 °C, respectively. Although at 22 °C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02). This, and the ability of VR26 to survive over a pH range of 3-11, indicates that VR26 could be used to control STEC O26:H11 in the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (A.Z.); (A.N.); (R.R.); (R.M.)
| |
Collapse
|
4
|
Abstract
The development of molecular nanostructures with well-defined particle size and shape is of eminent interest in biomedicine. Among many studied nanostructures, dendrimers represent the group of those most thoroughly characterized ones. Due to their unique structure and properties, dendrimers are very attractive for medical and pharmaceutical applications. Owing to the controllable cavities inside the dendrimer, guest molecules may be encapsulated, and highly reactive terminal groups are susceptible to further modifications, e.g., to facilitate target delivery. To understand the potential of these nanoparticles and to predict and avoid any adverse cellular reactions, it is necessary to know the mechanisms responsible for an efficient dendrimer uptake and the destination of their intracellular journey. In this article, we summarize the results of studies describing the dendrimer uptake, traffic, and efflux mechanisms depending on features of specific nanoparticles and cell types. We also present mechanisms of dendrimers responsible for toxicity and alteration in signal transduction pathways at the cellular level.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Molina F, Simancas A, Ramírez M, Tabla R, Roa I, Rebollo JE. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front Microbiol 2021; 12:564532. [PMID: 33664712 PMCID: PMC7920989 DOI: 10.3389/fmicb.2021.564532] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, the spread of antibiotic-resistant bacteria and efforts to preserve food microbiota have induced renewed interest in phage therapy. Phage cocktails, instead of a single phage, are commonly used as antibacterial agents since the hosts are unlikely to become resistant to several phages simultaneously. While the spectrum of activity might increase with cocktail complexity, excessive phages could produce side effects, such as the horizontal transfer of genes that augment the fitness of host strains, dysbiosis or high manufacturing costs. Therefore, cocktail formulation represents a compromise between achieving substantial reduction in the bacterial loads and restricting its complexity. Despite the abovementioned points, the observed bacterial load reduction does not increase significantly with the size of phage cocktails, indicating the requirement for a systematic approach to their design. In this work, the information provided by host range matrices was analyzed after building phage-bacteria infection networks (PBINs). To this end, we conducted a meta-analysis of 35 host range matrices, including recently published studies and new datasets comprising Escherichia coli strains isolated during ripening of artisanal raw milk cheese and virulent coliphages from ewes' feces. The nestedness temperature, which reflects the host range hierarchy of the phages, was determined from bipartite host range matrices using heuristic (Nestedness Temperature Calculator) and genetic (BinMatNest) algorithms. The latter optimizes matrix packing, leading to lower temperatures, i.e., it simplifies the identification of the phages with the broadest host range. The structure of infection networks suggests that generalist phages (and not specialist phages) tend to succeed in infecting less susceptible bacteria. A new metric (Φ), which considers some properties of the host range matrices (fill, temperature, and number of bacteria), is proposed as an estimator of phage cocktail size. To identify the best candidates, agglomerative hierarchical clustering using Ward's method was implemented. Finally, a cocktail was formulated for the biocontrol of cheese-isolated E. coli, reducing bacterial counts by five orders of magnitude.
Collapse
Affiliation(s)
- Felipe Molina
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Alfredo Simancas
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Manuel Ramírez
- Microbiology, Department of Biomedical Sciences, University of Extremadura, Badajoz, Spain
| | - Rafael Tabla
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - Isidro Roa
- Dairy Department, Scientific and Technological Research Centre of Extremadura, Technological Institute of Food and Agriculture, Junta de Extremadura, Badajoz, Spain
| | - José Emilio Rebollo
- Genetics, Department of Biochemistry Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| |
Collapse
|
6
|
Liao Y, Lavenburg VM, Lennon M, Salvador A, Hsu AL, Wu VCH. The effects of environmental factors on the prevalence and diversity of bacteriophages lytic against the top six
non‐O157
Shiga toxin‐producing
Escherichia coli
on an organic farm. J Food Saf 2020. [DOI: 10.1111/jfs.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yen‐Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Valerie M. Lavenburg
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Marion Lennon
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Angeline L. Hsu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service Western Regional Research Center Albany California USA
| |
Collapse
|
7
|
Characterisation of Vibrio Species from Surface and Drinking Water Sources and Assessment of Biocontrol Potentials of Their Bacteriophages. Int J Microbiol 2020; 2020:8863370. [PMID: 32831847 PMCID: PMC7424396 DOI: 10.1155/2020/8863370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to characterise Vibrio species of water samples collected from taps, boreholes, and dams in the North West province, South Africa, and assess biocontrol potentials of their bacteriophages. Fifty-seven putative Vibrio isolates were obtained on thiosulfate-citrate-bile-salt-sucrose agar and identified using biochemical tests and species-specific PCRs. Isolates were further characterised based on the presence of virulence factors, susceptibility to eleven antibiotics, and biofilm formation potentials. Twenty-two (38.60%) isolates were confirmed as Vibrio species, comprising V. harveyi (45.5%, n = 10), V. parahaemolyticus (22.7%, n = 5), V. cholerae (13.6%, n = 3), V. mimicus (9.1%, n = 2), and V. vulnificus (9.1%, n = 2). Three of the six virulent genes screened were positively amplified; four V. parahaemolyticus possessed the tdh (18.18%) and trh (18.18%) genes, while the zot gene was harboured by 3 V. cholerae (13.64%) and one V. mimicus (4.55%) isolate. Isolates revealed high levels of resistance to cephalothin (95.45%), ampicillin (77.27%), and streptomycin (40.91%), while lower resistances (4.55%–27.27%) were recorded for other antimicrobials. Sixteen (72.7%) isolates displayed multiple antibiotic-resistant properties. Cluster analysis of antibiotic resistance revealed a closer relationship between Vibrio isolates from different sampling sites. The Vibrio species displayed biofilm formation potentials at 37°C (63.6, n = 14), 35°C (50%, n = 11), and 25°C (36.4%, n = 8). Two phages isolated in this study (vB_VpM_SA3V and vB_VcM_SA3V) were classified as belonging to the family Myoviridae based on electron microscopy. These were able to lyse multidrug-resistant V. parahaemolyticus and V. cholerae strains. These findings not only indicate the presence of antibiotic-resistant virulent Vibrio species from dam, borehole, and tap water samples that could pose a health risk to humans who either come in contact with or consume water but also present these lytic phages as alternative agents that can be exploited for biological control of these pathogenic strains.
Collapse
|
8
|
Lennon M, Liao YT, Salvador A, Lauzon CR, Wu VCH. Bacteriophages specific to Shiga toxin-producing Escherichia coli exist in goat feces and associated environments on an organic produce farm in Northern California, USA. PLoS One 2020; 15:e0234438. [PMID: 32525945 PMCID: PMC7289414 DOI: 10.1371/journal.pone.0234438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STECs) contamination of produce, as a result of contact with ruminant fecal material, has been associated with serious foodborne illness. Bacteriophages (phages) that infect STECs have primarily been reported to be of cattle origin. However, they likely exist in other environments or in animals that share habitats with cattle, such as goats. To explore the presence and diversity of phages specific to STEC O157 and the top six non-O157 STECs in goat-associated environments, environmental samples consisting of feces (goat and cattle) and soil samples were collected monthly for six months from an organic produce farm. A variety of phages belonging to the Myoviridae, Siphoviridae, and Podoviridae families were isolated from all goat fecal and half of the soil samples. The most commonly isolated phages belonged to Myoviridae and were lytic against STEC O103. The isolated phages had different host ranges, but collectively, showed lytic activity against O157 and the top six non-O157 STEC strains excluding O121. Two non-O157 STECs (O174: H21 and O-antigen-negative: H18) were isolated from soil and cattle feces, respectively. Although prior studies have reported that goats shed STEC into the environment, the findings of the current study suggest that goat feces may also contain lytic STEC-specific phages. The phages of goat origin have the capacity to infect STECs implicated in causing foodborne outbreaks, making them potential candidates for biocontrol pending additional characterization steps. Further work is needed to determine if the addition of goats to the farm environment could potentially reduce the presence of STECs.
Collapse
Affiliation(s)
- Marion Lennon
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- Department of Biological Sciences, California State University East Bay, Hayward, California, United States of America
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Carol R. Lauzon
- Department of Biological Sciences, California State University East Bay, Hayward, California, United States of America
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Lee C, Choi IY, Park DH, Park MK. Isolation and characterization of a novel Escherichia coli O157:H7-specific phage as a biocontrol agent. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:189-199. [PMID: 32399231 PMCID: PMC7203308 DOI: 10.1007/s40201-020-00452-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
PURPOSE Escherichia coli O157:H7 is one of the major foodborne pathogens of global public concern. Bacteriophages (phages) have emerged as a promising alternative to antibiotics for controlling pathogenic bacteria. Here, a lytic E. coli O157:H7-specific phage (KFS-EC) was isolated, identified, and characterized to evaluate its potential as a biocontrol agent for E. coli O157:H7. METHODS KFS-EC was isolated from slaughterhouse in Korea. Morphological analysis, genomic analysis and several physiological tests were performed to identify and characterize the KFS-EC. RESULTS A specificity test indicated KFS-EC was strictly specific to E. coli O157:H7 strains among 60 bacterial strains tested. Morphological and phylogenetic analyses confirmed that KFS-EC belongs to the Rb49virus genus, Tevenvirinae subfamily, and the Myoviridae family of phages. KFS-EC genome consists of 164,725 bp and a total of 270 coding sequence features, of which 114 open reading frames (ORFs) were identified as phage functional genes. KFS-EC does not contain genes encoding lysogenic property and pathogenicity, which ensure its safe application. KFS-EC was relatively stable (~1 log decrease) under stressed conditions such as temperatures (20 °C-50 °C), pHs (3-11), organic solvents (ethanol and chloroform), and biocides (0.1% citric acid, 1% citric acid, and 0.1% peracetic acid). KFS-EC was able to inhibit E. coli O157:H7 efficiently at a multiplicity of infection (MOI) of 0.01 for 8 h with greater inhibitory effect and durability and was stable at 4 °C and 22 °C over a 12-week storage period. CONCLUSIONS Our results suggest that KFS-EC could be used as a biocontrol agent to E. coli O157:H7.
Collapse
Affiliation(s)
- Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - In Young Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Do Hyeon Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Food and Bio-industry Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Is Shiga Toxin-Producing Escherichia coli O45 No Longer a Food Safety Threat? The Danger is Still Out There. Microorganisms 2020; 8:microorganisms8050782. [PMID: 32455956 PMCID: PMC7285328 DOI: 10.3390/microorganisms8050782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Many Shiga toxin-producing Escherichia coli (STEC) strains, including the serogroups of O157 and most of the top six non-O157 serotypes, are frequently associated with foodborne outbreaks. Therefore, they have been extensively studied using next-generation sequencing technology. However, related information regarding STEC O45 strains is scarce. In this study, three environmental E. coli O45:H16 strains (RM11911, RM13745, and RM13752) and one clinical E. coli O45:H2 strain (SJ7) were sequenced and used to characterize virulence factors using two reference E. coli O45:H2 strains of clinical origin. Subsequently, whole-genome-based phylogenetic analysis was conducted for the six STEC O45 strains and nine other reference STEC genomes, in order to evaluate their evolutionary relationship. The results show that one locus of enterocyte effacement pathogenicity island was found in all three STEC O45:H2 strains, but not in the STEC O45:H16 strains. Additionally, E. coli O45:H2 strains were evolutionarily close to E. coli O103:H2 strains, sharing high homology in terms of virulence factors, such as Stx prophages, but were distinct from E. coli O45:H16 strains. The findings show that E. coli O45:H2 may be as virulent as E. coli O103:H2, which is frequently associated with severe illness and can provide genomic evidence to facilitate STEC surveillance.
Collapse
|
11
|
Bumunang EW, McAllister TA, Stanford K, Anany H, Niu YD, Ateba CN. Characterization of Non-O157 STEC Infecting Bacteriophages Isolated from Cattle Faeces in North-West South Africa. Microorganisms 2019; 7:E615. [PMID: 31779135 PMCID: PMC6956337 DOI: 10.3390/microorganisms7120615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023] Open
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD, SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae (n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating that cattle from North-West South Africa harbour phages with lytic potentials that could potentially be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region.
Collapse
Affiliation(s)
- Emmanuel W. Bumunang
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada;
| | - Hany Anany
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, Guelph, ON N1G 5C9, Canada;
| | - Yan D. Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Collins N. Ateba
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
12
|
Liao YT, Salvador A, Harden LA, Liu F, Lavenburg VM, Li RW, Wu VCH. Characterization of a Lytic Bacteriophage as an Antimicrobial Agent for Biocontrol of Shiga Toxin-Producing Escherichia coli O145 Strains. Antibiotics (Basel) 2019; 8:E74. [PMID: 31195679 PMCID: PMC6627115 DOI: 10.3390/antibiotics8020074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145 is one of the most prevalent non-O157 serogroups associated with foodborne outbreaks. Lytic phages are a potential alternative to antibiotics in combatting bacterial pathogens. In this study, we characterized a Siphoviridae phage lytic against STEC O145 strains as a novel antimicrobial agent. Escherichia phage vB_EcoS-Ro145clw (Ro145clw) was isolated and purified prior to physiological and genomic characterization. Then, in vitro antimicrobial activity against an outbreak strain, E. coli O145:H28, was evaluated. Ro145clw is a double-stranded DNA phage with a genome 42,031 bp in length. Of the 67 genes identified in the genome, 21 were annotated with functional proteins, none of which were stx genes. Ro145clw had a latent period of 21 min and a burst size of 192 phages per infected cell. The phage could sustain a wide range of pH (pH 3 to pH 10) and temperatures (-80 °C to -73 °C). Ro145clw was able to reduce E. coli O145:H28 in lysogeny broth by approximately 5 log at 37 °C in four hours. These findings indicate that the Ro145clw phage is a promising antimicrobial agent that can be used to control E. coli O145 in adverse pH and temperature conditions.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Leslie A Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Valerie M Lavenburg
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| | - Robert W Li
- Animal Genomics and Improvement Laboratory, Department of Agriculture (USDA), Agricultural Research Service (ARS), Beltsville, MD 20705, USA.
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Regional Research Center (WRRC), Albany, CA 94710, USA.
| |
Collapse
|
13
|
Liao YT, Sun X, Quintela IA, Bridges DF, Liu F, Zhang Y, Salvador A, Wu VCH. Discovery of Shiga Toxin-Producing Escherichia coli (STEC)-Specific Bacteriophages From Non-fecal Composts Using Genomic Characterization. Front Microbiol 2019; 10:627. [PMID: 31001216 PMCID: PMC6454146 DOI: 10.3389/fmicb.2019.00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
Composting is a complex biodegradable process that converts organic materials into nutrients to facilitate crop yields, and, if well managed, can render bactericidal effects. Majority of research focused on detection of enteric pathogens, such as Shiga toxin-producing Escherichia coli (STEC) in fecal composts. Recently, attention has been emphasized on bacteriophages, such as STEC-specific bacteriophages, associated with STEC from the fecal-contaminated environment because they are able to sustain adverse environmental condition during composting process. However, little is known regarding the isolation of STEC-specific bacteriophages in non-fecal composts. Thus, the objectives were to isolate and genomically characterize STEC-specific bacteriophages, and to evaluate its association with STEC in non-fecal composts. For bacteriophage isolation, the samples were enriched with non-pathogenic E. coli (3 strains) and STEC (14 strains), respectively. After purification, host range, plaque size, and phage morphology were examined. Furthermore, bacteriophage genomes were subjected to whole-genome sequencing using Illumina MiSeq and genomic analyses. Isolation of top six non-O157 and O157 STEC utilizing culture methods combined with PCR-based confirmation was also conducted. The results showed that various STEC-specific bacteriophages, including vB_EcoM-Ro111lw, vB_EcoM-Ro121lw, vB_EcoS-Ro145lw, and vB_EcoM-Ro157lw, with different but complementary host ranges were isolated. Genomic analysis showed the genome sizes varied from 42kb to 149kb, and most bacteriophages were unclassified at the genus level, except vB_EcoM-Ro111lw as FelixO1-like viruses. Prokka predicted less than 25% of the ORFs coded for known functions, including those essential for DNA replication, bacteriophage structure, and host cell lysis. Moreover, none of the bacteriophages harbored lysogenic genes or virulence genes, such as stx or eae. Additionally, the presence of these lytic bacteriophages was likely attributed to zero isolation of STEC and could also contribute to additional antimicrobial effects in composts, if the composting process was insufficient. Current findings indicate that various STEC-specific bacteriophages were found in the non-fecal composts. In addition, the genomic characterization provides in-depth information to complement the deficiency of biological features regarding lytic cycle of the new bacteriophages. Most importantly, these bacteriophages have great potential to control various serogroups of STEC.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xincheng Sun
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Irwin A. Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - David F. Bridges
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Fang Liu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
14
|
Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1. Viruses 2015; 7:6163-81. [PMID: 26633460 PMCID: PMC4690856 DOI: 10.3390/v7122932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.
Collapse
|
15
|
Complete Genome Sequence of Escherichia coli O145:NM Bacteriophage vB_EcoM_AYO145A, a New Member of O1-Like Phages. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00539-15. [PMID: 26089406 PMCID: PMC4472883 DOI: 10.1128/genomea.00539-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previously, bacteriophage vB_EcoM_AYO145A, which lyses Shiga toxin-producing Escherichia coli O145:NM, was classified as an O1-like virus of the Myoviridae family. Here, we report the complete genome sequence of this phage and a comparative genomic analysis with other known O1-like phages.
Collapse
|